Summary: | Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment—a ’scum’. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environments, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.
|