Reduction of Capacity Fading in High-Voltage NMC Batteries with the Addition of Reduced Graphene Oxide

Lithium-ion batteries for electric vehicles (EV) require high energy capacity, reduced weight, extended lifetime and low cost. EV manufacturers are focused on Ni-rich layered oxides because of their promising attributes, which include the ability to operate at a relatively high voltage. However, the...

Full description

Bibliographic Details
Main Authors: Yahya M. Alqahtani, Quinton L. Williams
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/6/2146
Description
Summary:Lithium-ion batteries for electric vehicles (EV) require high energy capacity, reduced weight, extended lifetime and low cost. EV manufacturers are focused on Ni-rich layered oxides because of their promising attributes, which include the ability to operate at a relatively high voltage. However, these cathodes, usually made with nickel–manganese–cobalt (NMC811), typically experience accelerated capacity fading when operating at a high voltage. In this research, reduced graphene oxide (rGO) is added to a NMC811 cathode material to improve the performance in cyclability studies. Batteries made with rGO/NMC811 cathodes showed a 17% improvement in capacity retention after 100 cycles of testing over a high-voltage operating window of 2.5–4.5 V.
ISSN:1996-1944