Pollination success of Fraxinus excelsior L. in the context of ash dieback

Abstract Key message Paternity analyses show that effective pollination of ash (Fraxinus excelsior L.) in a seed orchard and a floodplain forest affected by ash dieback is more likely to be facilitated by healthier males. Thereby, natural selection can have a positive effect on the health of future...

Full description

Bibliographic Details
Main Authors: Anna-Katharina Eisen, Devrim Semizer-Cuming, Susanne Jochner-Oette, Barbara Fussi
Format: Article
Language:English
Published: BMC 2023-06-01
Series:Annals of Forest Science
Subjects:
Online Access:https://doi.org/10.1186/s13595-023-01189-5
_version_ 1827928317550919680
author Anna-Katharina Eisen
Devrim Semizer-Cuming
Susanne Jochner-Oette
Barbara Fussi
author_facet Anna-Katharina Eisen
Devrim Semizer-Cuming
Susanne Jochner-Oette
Barbara Fussi
author_sort Anna-Katharina Eisen
collection DOAJ
description Abstract Key message Paternity analyses show that effective pollination of ash (Fraxinus excelsior L.) in a seed orchard and a floodplain forest affected by ash dieback is more likely to be facilitated by healthier males. Thereby, natural selection can have a positive effect on the health of future generations. Context Ongoing ash dieback and increasing fragmentation of ash populations may result in reduced pollen flow, which can reduce pollination success of future generations of ash trees. Therefore, it is essential to further improve our understanding of gene flow patterns, especially with respect to ash dieback. Aims In this study, paternity analyses were conducted in a seed orchard and a floodplain forest in Germany in 2018 to explain the relationship between pollination success and the health status of ash trees and distances of effective pollen transport. Methods Cambium samples (i.e., from twigs and stumps) were collected from 251 ash trees (putative father and mother trees) for genotyping, and the health status of each tree was documented using a scoring system to evaluate vitality. Additionally, seeds were harvested from 12 mother trees per site. Genetic analyses using nuclear microsatellites were performed to determine paternal trees. Paternities were assigned based on the likelihood model implemented in the Cervus 3.0.7 software. Results Our results showed that the average pollination distance was 76 m in the seed orchard and 166 m in the floodplain forest. In general, pollination success decreased substantially with increasing distance to the mother tree. Despite the dense tree cover in the floodplain forest, pollen were transported over long distances (greater than 550 m), suggesting that non-local sources also play a role in pollination. This is supported by the foreign pollen input identified in the seed orchard (66.5%). Self-pollination was detected only to a very small extent, and thus had no major influence on reproduction. In addition, both healthy and slightly diseased father trees showed similar mating success. However, this was not the case for the severely diseased ash trees (more than 50% of crown damage) because only a few offspring could be assigned to them. Nevertheless, in contrast to the floodplain forest, there was no significant correlation between damage classes and pollination success in the seed orchard. Conclusion Long-distance pollen transport contributes to the connectivity of ash trees in the landscape. Additionally, both healthy and slightly diseased fathers have a greater contribution to pollination, thus potentially improving the health of the next generation of ash trees. Moreover, gene flow between stepping stone populations is necessary to ensure the positive impact on the genetic diversity of ash populations in the future.
first_indexed 2024-03-13T06:07:01Z
format Article
id doaj.art-1c4a261739b542068aacc7f3fc02c611
institution Directory Open Access Journal
issn 1297-966X
language English
last_indexed 2024-03-13T06:07:01Z
publishDate 2023-06-01
publisher BMC
record_format Article
series Annals of Forest Science
spelling doaj.art-1c4a261739b542068aacc7f3fc02c6112023-06-11T11:28:56ZengBMCAnnals of Forest Science1297-966X2023-06-0180112110.1186/s13595-023-01189-5Pollination success of Fraxinus excelsior L. in the context of ash diebackAnna-Katharina Eisen0Devrim Semizer-Cuming1Susanne Jochner-Oette2Barbara Fussi3Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-IngolstadtForest Research Institute of Baden-Württemberg (FVA)Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-IngolstadtBavarian Office for Forest Genetics (AWG)Abstract Key message Paternity analyses show that effective pollination of ash (Fraxinus excelsior L.) in a seed orchard and a floodplain forest affected by ash dieback is more likely to be facilitated by healthier males. Thereby, natural selection can have a positive effect on the health of future generations. Context Ongoing ash dieback and increasing fragmentation of ash populations may result in reduced pollen flow, which can reduce pollination success of future generations of ash trees. Therefore, it is essential to further improve our understanding of gene flow patterns, especially with respect to ash dieback. Aims In this study, paternity analyses were conducted in a seed orchard and a floodplain forest in Germany in 2018 to explain the relationship between pollination success and the health status of ash trees and distances of effective pollen transport. Methods Cambium samples (i.e., from twigs and stumps) were collected from 251 ash trees (putative father and mother trees) for genotyping, and the health status of each tree was documented using a scoring system to evaluate vitality. Additionally, seeds were harvested from 12 mother trees per site. Genetic analyses using nuclear microsatellites were performed to determine paternal trees. Paternities were assigned based on the likelihood model implemented in the Cervus 3.0.7 software. Results Our results showed that the average pollination distance was 76 m in the seed orchard and 166 m in the floodplain forest. In general, pollination success decreased substantially with increasing distance to the mother tree. Despite the dense tree cover in the floodplain forest, pollen were transported over long distances (greater than 550 m), suggesting that non-local sources also play a role in pollination. This is supported by the foreign pollen input identified in the seed orchard (66.5%). Self-pollination was detected only to a very small extent, and thus had no major influence on reproduction. In addition, both healthy and slightly diseased father trees showed similar mating success. However, this was not the case for the severely diseased ash trees (more than 50% of crown damage) because only a few offspring could be assigned to them. Nevertheless, in contrast to the floodplain forest, there was no significant correlation between damage classes and pollination success in the seed orchard. Conclusion Long-distance pollen transport contributes to the connectivity of ash trees in the landscape. Additionally, both healthy and slightly diseased fathers have a greater contribution to pollination, thus potentially improving the health of the next generation of ash trees. Moreover, gene flow between stepping stone populations is necessary to ensure the positive impact on the genetic diversity of ash populations in the future.https://doi.org/10.1186/s13595-023-01189-5Ash diebackGene flowPaternity analysisEffective pollen transportPollination success
spellingShingle Anna-Katharina Eisen
Devrim Semizer-Cuming
Susanne Jochner-Oette
Barbara Fussi
Pollination success of Fraxinus excelsior L. in the context of ash dieback
Annals of Forest Science
Ash dieback
Gene flow
Paternity analysis
Effective pollen transport
Pollination success
title Pollination success of Fraxinus excelsior L. in the context of ash dieback
title_full Pollination success of Fraxinus excelsior L. in the context of ash dieback
title_fullStr Pollination success of Fraxinus excelsior L. in the context of ash dieback
title_full_unstemmed Pollination success of Fraxinus excelsior L. in the context of ash dieback
title_short Pollination success of Fraxinus excelsior L. in the context of ash dieback
title_sort pollination success of fraxinus excelsior l in the context of ash dieback
topic Ash dieback
Gene flow
Paternity analysis
Effective pollen transport
Pollination success
url https://doi.org/10.1186/s13595-023-01189-5
work_keys_str_mv AT annakatharinaeisen pollinationsuccessoffraxinusexcelsiorlinthecontextofashdieback
AT devrimsemizercuming pollinationsuccessoffraxinusexcelsiorlinthecontextofashdieback
AT susannejochneroette pollinationsuccessoffraxinusexcelsiorlinthecontextofashdieback
AT barbarafussi pollinationsuccessoffraxinusexcelsiorlinthecontextofashdieback