Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion

The aim of this work is to establish and generalize a relationship between fractional partial differential equations (fPDEs) and stochastic differential equations (SDEs) to a wider class of stochastic processes, including fractional Brownian motions <inline-formula><math xmlns="http://...

Full description

Bibliographic Details
Main Author: Bodo Herzog
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/3/340
_version_ 1797486411341889536
author Bodo Herzog
author_facet Bodo Herzog
author_sort Bodo Herzog
collection DOAJ
description The aim of this work is to establish and generalize a relationship between fractional partial differential equations (fPDEs) and stochastic differential equations (SDEs) to a wider class of stochastic processes, including fractional Brownian motions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msubsup><mi>B</mi><mi>t</mi><mi>H</mi></msubsup><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> and sub-fractional Brownian motions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msubsup><mi>ξ</mi><mi>t</mi><mi>H</mi></msubsup><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> with Hurst parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>∈</mo><mo>(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We start by establishing the connection between a fPDE and SDE via the Feynman–Kac Theorem, which provides a stochastic representation of a general Cauchy problem. In hindsight, we extend this connection by assuming SDEs with fractional- and sub-fractional Brownian motions and prove the generalized Feynman–Kac formulas under a (sub-)fractional Brownian motion. An application of the theorem demonstrates, as a by-product, the solution of a fractional integral, which has relevance in probability theory.
first_indexed 2024-03-09T23:32:50Z
format Article
id doaj.art-1c4d856ff2a6482fabca4f94a47d7dea
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:32:50Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-1c4d856ff2a6482fabca4f94a47d7dea2023-11-23T17:05:56ZengMDPI AGMathematics2227-73902022-01-0110334010.3390/math10030340Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian MotionBodo Herzog0Economics Department, ESB Business School, Reutlingen University, 72762 Reutlingen, GermanyThe aim of this work is to establish and generalize a relationship between fractional partial differential equations (fPDEs) and stochastic differential equations (SDEs) to a wider class of stochastic processes, including fractional Brownian motions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msubsup><mi>B</mi><mi>t</mi><mi>H</mi></msubsup><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> and sub-fractional Brownian motions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msubsup><mi>ξ</mi><mi>t</mi><mi>H</mi></msubsup><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> with Hurst parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>∈</mo><mo>(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We start by establishing the connection between a fPDE and SDE via the Feynman–Kac Theorem, which provides a stochastic representation of a general Cauchy problem. In hindsight, we extend this connection by assuming SDEs with fractional- and sub-fractional Brownian motions and prove the generalized Feynman–Kac formulas under a (sub-)fractional Brownian motion. An application of the theorem demonstrates, as a by-product, the solution of a fractional integral, which has relevance in probability theory.https://www.mdpi.com/2227-7390/10/3/340Cauchy problemfractional-PDESDEfractional Brownian motionsub-fractional processesFeynman–Kac formula
spellingShingle Bodo Herzog
Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion
Mathematics
Cauchy problem
fractional-PDE
SDE
fractional Brownian motion
sub-fractional processes
Feynman–Kac formula
title Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion
title_full Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion
title_fullStr Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion
title_full_unstemmed Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion
title_short Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion
title_sort adopting feynman kac formula in stochastic differential equations with sub fractional brownian motion
topic Cauchy problem
fractional-PDE
SDE
fractional Brownian motion
sub-fractional processes
Feynman–Kac formula
url https://www.mdpi.com/2227-7390/10/3/340
work_keys_str_mv AT bodoherzog adoptingfeynmankacformulainstochasticdifferentialequationswithsubfractionalbrownianmotion