Asymptotic behavior of positive solutions of a semilinear Dirichlet problem in the annulus

In this paper, we establish existence and asymptotic behavior of a positive classical solution to the following semilinear boundary value problem: \[-\Delta u=q(x)u^{\sigma }\;\text{in}\;\Omega,\quad u_{|\partial\Omega}=0.\] Here \(\Omega\) is an annulus in \(\mathbb{R}^{n}\), \(n\geq 3\), \(\sigma...

Full description

Bibliographic Details
Main Authors: Safa Dridi, Bilel Khamessi
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2015-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol35/1/art/opuscula_math_3502.pdf
Description
Summary:In this paper, we establish existence and asymptotic behavior of a positive classical solution to the following semilinear boundary value problem: \[-\Delta u=q(x)u^{\sigma }\;\text{in}\;\Omega,\quad u_{|\partial\Omega}=0.\] Here \(\Omega\) is an annulus in \(\mathbb{R}^{n}\), \(n\geq 3\), \(\sigma \lt 1\) and \(q\) is a positive function in \(\mathcal{C}_{loc}^{\gamma }(\Omega )\), \(0\lt\gamma \lt 1\), satisfying some appropriate assumptions related to Karamata regular variation theory. Our arguments combine a method of sub- and supersolutions with Karamata regular variation theory.
ISSN:1232-9274