Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets

Geometric manipulation of a quantum system offers a method for fast, universal and robust quantum information processing. Here, we propose a scheme for universal all-geometric quantum computation using non-adiabatic quantum holonomies. We propose three different realizations of the scheme based on a...

Full description

Bibliographic Details
Main Authors: Vahid Azimi Mousolou, Carlo M Canali, Erik Sjöqvist
Format: Article
Language:English
Published: IOP Publishing 2014-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/16/1/013029
Description
Summary:Geometric manipulation of a quantum system offers a method for fast, universal and robust quantum information processing. Here, we propose a scheme for universal all-geometric quantum computation using non-adiabatic quantum holonomies. We propose three different realizations of the scheme based on an unconventional use of quantum dot and single-molecule magnet devices, which offer promising scalability and robust efficiency.
ISSN:1367-2630