The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease

Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed t...

Full description

Bibliographic Details
Main Authors: He Li, Tianyuan Ye, Xingyang Liu, Rui Guo, Xiuzhao Yang, Yangyi Li, Dongmei Qi, Yihua Wei, Yifan Zhu, Lei Wen, Xiaorui Cheng
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Journal of Pharmaceutical Analysis
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095177923000965
Description
Summary:Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed to this increase. Immune regulation by microglia plays a major role in the progression of aging and AD, according to the functions of 41 intersecting differentially expressed genes in microglia. Signaling crosstalk between C−C motif chemokine ligand (CCL) and major histocompatibility complex-1 bridges intercellular communication in the hippocampus during aging and AD. The amyloid precursor protein (APP) and colony stimulating factor (CSF) signals drive 5× FAD to deviate from aging track to AD occurrence among intercellular communication in hippocampus. Microglia are involved in the progression of aging and AD can be divided into 10 functional types. The strength of the interaction among microglial subtypes weakened with aging, and the CCL and CSF signaling pathways were the fundamental bridge of communication among microglial subtypes.
ISSN:2095-1779