Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity

We consider the Keller-Segel system with gradient dependent chemotactic sensitivity $$\displaylines{ u_t =\Delta u-\nabla\cdot(u|\nabla v|^{p-2}\nabla v),\quad x\in\Omega,\; t>0,\cr v_t =\Delta v-v+u,\quad x\in\Omega,\; t>0,\cr \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial\nu...

Full description

Bibliographic Details
Main Authors: Jianlu Yan, Yuxiang Li
Format: Article
Language:English
Published: Texas State University 2020-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2020/122/abstr.html
_version_ 1818617080101994496
author Jianlu Yan
Yuxiang Li
author_facet Jianlu Yan
Yuxiang Li
author_sort Jianlu Yan
collection DOAJ
description We consider the Keller-Segel system with gradient dependent chemotactic sensitivity $$\displaylines{ u_t =\Delta u-\nabla\cdot(u|\nabla v|^{p-2}\nabla v),\quad x\in\Omega,\; t>0,\cr v_t =\Delta v-v+u,\quad x\in\Omega,\; t>0,\cr \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial\nu}=0,\quad x\in\partial\Omega,\; t>0,\cr u(x,0)=u_0(x),\quad v(x,0)=v_0(x), \quad x\in\Omega }$$ in a smooth bounded domain $\Omega\subset \mathbb{R}^n$, $n\geq2$. We shown that for all reasonably regular initial data $u_0\geq 0$ and $v_0\geq0$, the corresponding Neumann initial-boundary value problem possesses a global weak solution which is uniformly bounded provided that $1<p<n/(n-1)$.
first_indexed 2024-12-16T17:00:00Z
format Article
id doaj.art-1c6832f4dba04c2d8375aa905fdad188
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-16T17:00:00Z
publishDate 2020-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-1c6832f4dba04c2d8375aa905fdad1882022-12-21T22:23:46ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-12-012020122,114Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivityJianlu Yan0Yuxiang Li1 Southeast Univ., Nanjing, China Southeast Univ., Nanjing, China We consider the Keller-Segel system with gradient dependent chemotactic sensitivity $$\displaylines{ u_t =\Delta u-\nabla\cdot(u|\nabla v|^{p-2}\nabla v),\quad x\in\Omega,\; t>0,\cr v_t =\Delta v-v+u,\quad x\in\Omega,\; t>0,\cr \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial\nu}=0,\quad x\in\partial\Omega,\; t>0,\cr u(x,0)=u_0(x),\quad v(x,0)=v_0(x), \quad x\in\Omega }$$ in a smooth bounded domain $\Omega\subset \mathbb{R}^n$, $n\geq2$. We shown that for all reasonably regular initial data $u_0\geq 0$ and $v_0\geq0$, the corresponding Neumann initial-boundary value problem possesses a global weak solution which is uniformly bounded provided that $1<p<n/(n-1)$.http://ejde.math.txstate.edu/Volumes/2020/122/abstr.htmlkeller-segel systemweak solution chemotactic sensitivity
spellingShingle Jianlu Yan
Yuxiang Li
Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
Electronic Journal of Differential Equations
keller-segel system
weak solution
chemotactic sensitivity
title Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
title_full Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
title_fullStr Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
title_full_unstemmed Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
title_short Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
title_sort existence and boundedness of solutions for a keller segel system with gradient dependent chemotactic sensitivity
topic keller-segel system
weak solution
chemotactic sensitivity
url http://ejde.math.txstate.edu/Volumes/2020/122/abstr.html
work_keys_str_mv AT jianluyan existenceandboundednessofsolutionsforakellersegelsystemwithgradientdependentchemotacticsensitivity
AT yuxiangli existenceandboundednessofsolutionsforakellersegelsystemwithgradientdependentchemotacticsensitivity