On singular $p$-Laplacian boundary value problems involving integral boundary conditions

We prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\...

Full description

Bibliographic Details
Main Authors: Dang Dinh Hai, Xiao Wang
Format: Article
Language:English
Published: University of Szeged 2019-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7389
Description
Summary:We prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\ }$ is $p$-superlinear or $p$-sublinear at $\infty $ and is allowed be singular at $t=0,1$ and $u=0.$
ISSN:1417-3875