On singular $p$-Laplacian boundary value problems involving integral boundary conditions

We prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\...

Full description

Bibliographic Details
Main Authors: Dang Dinh Hai, Xiao Wang
Format: Article
Language:English
Published: University of Szeged 2019-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7389
_version_ 1797830490784268288
author Dang Dinh Hai
Xiao Wang
author_facet Dang Dinh Hai
Xiao Wang
author_sort Dang Dinh Hai
collection DOAJ
description We prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\ }$ is $p$-superlinear or $p$-sublinear at $\infty $ and is allowed be singular at $t=0,1$ and $u=0.$
first_indexed 2024-04-09T13:36:57Z
format Article
id doaj.art-1c70c3c118834e8eba3a55fc3f6df0d8
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:57Z
publishDate 2019-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-1c70c3c118834e8eba3a55fc3f6df0d82023-05-09T07:53:09ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752019-12-0120199011310.14232/ejqtde.2019.1.907389On singular $p$-Laplacian boundary value problems involving integral boundary conditionsDang Dinh Hai0Xiao Wang1Mississippi State University, Mississippi State, USAMississippi State University, Mississippi State, USAWe prove the existence of positive solutions for the $p$-Laplacian equations \[-(\phi (u^{\prime }))^{\prime }=\lambda f(t,u),\qquad t\in (0,1) \] with integral boundary conditions. Here $\lambda $ is a positive parameter, $\phi (s)=|s|^{p-2}s,p>1,\ f:(0,1)\times (0,\infty )\rightarrow \mathbb{R\ }$ is $p$-superlinear or $p$-sublinear at $\infty $ and is allowed be singular at $t=0,1$ and $u=0.$http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7389$p$-laplacianintegral boundary conditionspositive solutions
spellingShingle Dang Dinh Hai
Xiao Wang
On singular $p$-Laplacian boundary value problems involving integral boundary conditions
Electronic Journal of Qualitative Theory of Differential Equations
$p$-laplacian
integral boundary conditions
positive solutions
title On singular $p$-Laplacian boundary value problems involving integral boundary conditions
title_full On singular $p$-Laplacian boundary value problems involving integral boundary conditions
title_fullStr On singular $p$-Laplacian boundary value problems involving integral boundary conditions
title_full_unstemmed On singular $p$-Laplacian boundary value problems involving integral boundary conditions
title_short On singular $p$-Laplacian boundary value problems involving integral boundary conditions
title_sort on singular p laplacian boundary value problems involving integral boundary conditions
topic $p$-laplacian
integral boundary conditions
positive solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7389
work_keys_str_mv AT dangdinhhai onsingularplaplacianboundaryvalueproblemsinvolvingintegralboundaryconditions
AT xiaowang onsingularplaplacianboundaryvalueproblemsinvolvingintegralboundaryconditions