Summary: | The regional-scale estimation of crop evapotranspiration (ET<sub>c</sub>) over a heterogeneous surface is an important tool for the decision-makers in managing and allocating water resources. This is especially critical in the arid to semi-arid regions that require supplemental water due to insufficient precipitation, soil moisture, or groundwater. Over the years, various remote sensing-based surface energy balance (SEB) models have been developed to accurately estimate ET<sub>c</sub> over a regional scale. However, it is important to carry out the SEB model assessment for a particular geographical setting to ensure the suitability of a model. Thus, in this study, four commonly used and contrasting remote sensing models viz. METRIC (mapping evapotranspiration at high resolution with internalized calibration), SEBAL (surface energy balance algorithm for land), S-SEBI (simplified surface energy balance index), and SEBS (surface energy balance system) were compared and used to quantify and map the spatio-temporal variation of ET<sub>c</sub> in the semi-arid to arid inter-mountain region of Big Horn Basin, Wyoming (Landsat Path/Row: 37/29). Model estimates from 19 cloud-free Landsat 7 and 8 images were compared with the Bowen ratio energy balance system (BREBS) flux stationed in a center pivot irrigated field during 2017 (sugar beet), 2018 (dry bean), and 2019 (barley) growing seasons. The results indicated that all SEB models are effective in capturing the variation of ET<sub>c</sub> with R<sup>2</sup> ranging in between 0.06 to 0.95 and RMSD between 0.07 to 0.15 mm h<sup>−1</sup>. Pooled data over three vegetative surfaces for three years under irrigated conditions revealed that METRIC (NSE = 0.9) performed better across all land cover types, followed by SEBS (NSE = 0.76), S-SEBI (NSE = 0.73), and SEBAL (NSE = 0.65). In general, all SEB models substantially overestimated ET<sub>c</sub> and underestimated sensible heat (H) fluxes under dry conditions when only crop residue was available at the surface. A mid-season density plot and absolute difference maps at image scale between the models showed that models involving METRIC, SEBAL, and S-SEBI are close in their estimates of daily crop evapotranspiration (ET<sub>24</sub>) with pixel-wise RMSD ranged from 0.54 to 0.76 mm d<sup>−1</sup> and an average absolute difference across the study area ranged from 0.47 to 0.56 mm d<sup>−1</sup>. Likewise, all the SEB models underestimated the seasonal ET<sub>c</sub>, except SEBS.
|