On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators

The starting points of the paper are the classic Lototsky–Bernstein operators. We present an integral Durrmeyer-type extension and investigate some approximation properties of this new class. The evaluation of the convergence speed is performed both with moduli of smoothness and with K-functionals o...

Full description

Bibliographic Details
Main Authors: Ulrich Abel, Octavian Agratini
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/10/1841
_version_ 1797513113554124800
author Ulrich Abel
Octavian Agratini
author_facet Ulrich Abel
Octavian Agratini
author_sort Ulrich Abel
collection DOAJ
description The starting points of the paper are the classic Lototsky–Bernstein operators. We present an integral Durrmeyer-type extension and investigate some approximation properties of this new class. The evaluation of the convergence speed is performed both with moduli of smoothness and with K-functionals of the Peetre-type. In a distinct section we indicate a generalization of these operators that is useful in approximating vector functions with real values defined on the hypercube <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mi>q</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. The study involves achieving a parallelism between different classes of linear and positive operators, which will highlight a symmetry between these approximation processes.
first_indexed 2024-03-10T06:10:09Z
format Article
id doaj.art-1c766fed478d454c927b5285861e7cb5
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T06:10:09Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-1c766fed478d454c927b5285861e7cb52023-11-22T20:09:54ZengMDPI AGSymmetry2073-89942021-10-011310184110.3390/sym13101841On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein OperatorsUlrich Abel0Octavian Agratini1Fachbereich MND, Technische Hochschule Mittelhessen, 61169 Friedberg, GermanyFaculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, RomaniaThe starting points of the paper are the classic Lototsky–Bernstein operators. We present an integral Durrmeyer-type extension and investigate some approximation properties of this new class. The evaluation of the convergence speed is performed both with moduli of smoothness and with K-functionals of the Peetre-type. In a distinct section we indicate a generalization of these operators that is useful in approximating vector functions with real values defined on the hypercube <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mi>q</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. The study involves achieving a parallelism between different classes of linear and positive operators, which will highlight a symmetry between these approximation processes.https://www.mdpi.com/2073-8994/13/10/1841Lototsky operatorKorovkin theoremmodulus of smoothnessK-functionalDurrmeyer extension
spellingShingle Ulrich Abel
Octavian Agratini
On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
Symmetry
Lototsky operator
Korovkin theorem
modulus of smoothness
K-functional
Durrmeyer extension
title On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
title_full On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
title_fullStr On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
title_full_unstemmed On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
title_short On the Durrmeyer-Type Variant and Generalizations of Lototsky–Bernstein Operators
title_sort on the durrmeyer type variant and generalizations of lototsky bernstein operators
topic Lototsky operator
Korovkin theorem
modulus of smoothness
K-functional
Durrmeyer extension
url https://www.mdpi.com/2073-8994/13/10/1841
work_keys_str_mv AT ulrichabel onthedurrmeyertypevariantandgeneralizationsoflototskybernsteinoperators
AT octavianagratini onthedurrmeyertypevariantandgeneralizationsoflototskybernsteinoperators