Characterising the Thematic Content of Image Pixels with Topologically Structured Clustering
The location of a pixel in feature space is a function of its thematic composition. The latter is central to an image classification analysis, notably as an input (e.g., training data for a supervised classifier) and/or an output (e.g., predicted class label). Whether as an input to or output from a...
Päätekijä: | Giles M. Foody |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2025-01-01
|
Sarja: | Remote Sensing |
Aiheet: | |
Linkit: | https://www.mdpi.com/2072-4292/17/1/130 |
Samankaltaisia teoksia
-
Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data
Tekijä: Giles M. Foody
Julkaistu: (2022-10-01) -
Improvement of land cover classification accuracy by training sample clustering
Tekijä: Artem Andreiev, et al.
Julkaistu: (2024-04-01) -
A Sample-Encoding Generalization of the Kohonen Associative Memory and Application to Knee Kinematic Data Representation and Pathology Classification
Tekijä: Badreddine Ben Nouma, et al.
Julkaistu: (2019-04-01) -
Ground Truth in Classification Accuracy Assessment: Myth and Reality
Tekijä: Giles M. Foody
Julkaistu: (2024-02-01) -
Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery
Tekijä: Jakub Jech, et al.
Julkaistu: (2023-10-01)