Classical and Quantum Spherical Pendulum

The seminal paper by Niels Bohr followed by a paper by Arnold Sommerfeld led to a revolutionary Bohr–Sommerfeld theory of atomic spectra. We are interested in the information about the structure of quantum mechanics encoded in this theory. In particular, we want to extend Bohr–Sommerfeld theory to a...

Full description

Bibliographic Details
Main Authors: Richard Cushman, Jędrzej Śniatycki
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/3/496
Description
Summary:The seminal paper by Niels Bohr followed by a paper by Arnold Sommerfeld led to a revolutionary Bohr–Sommerfeld theory of atomic spectra. We are interested in the information about the structure of quantum mechanics encoded in this theory. In particular, we want to extend Bohr–Sommerfeld theory to a full quantum theory of completely integrable Hamiltonian systems, which is compatible with geometric quantization. In the general case, we use geometric quantization to prove analogues of the Bohr–Sommerfeld quantization conditions for the prequantum operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold-italic">P</mi><mi>f</mi></msub></semantics></math></inline-formula>. If a prequantum operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold-italic">P</mi><mi>f</mi></msub></semantics></math></inline-formula> satisfies the Bohr–Sommerfeld conditions and if it restricts to a directly quantized operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold-italic">Q</mi><mi>f</mi></msub></semantics></math></inline-formula> in the representation corresponding to the polarization <i>F</i>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="bold-italic">Q</mi><mi>f</mi></msub></semantics></math></inline-formula> also satisfies the Bohr–Sommerfeld conditions. The proof that the quantum spherical pendulum is a quantum system of the type we are looking for requires a new treatment of the classical action functions and their properties. For the sake of completeness we have provided an extensive presentation of the classical spherical pendulum. In our approach to Bohr–Sommerfeld theory, which we call Bohr–Sommerfeld–Heisenberg quantization, we define shifting operators that provide transitions between different quantum states. Moreover, we relate these shifting operators to quantization of functions on the phase space of the theory. We use Bohr–Sommerfeld–Heisenberg theory to study the properties of the quantum spherical pendulum, in particular, the boundary conditions for the shifting operators and quantum monodromy.
ISSN:2073-8994