Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions

Let $f:\mathbb{R}\times \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ be a continuous function and let $h:\mathbb{R}\rightarrow \mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\dot{x}=f\left( t,x\right) $ admits solutions $x:\mathbb{R}\rightarro...

Full description

Bibliographic Details
Main Author: C. Avramescu
Format: Article
Language:English
Published: University of Szeged 2003-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=159
_version_ 1797830760289271808
author C. Avramescu
author_facet C. Avramescu
author_sort C. Avramescu
collection DOAJ
description Let $f:\mathbb{R}\times \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ be a continuous function and let $h:\mathbb{R}\rightarrow \mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\dot{x}=f\left( t,x\right) $ admits solutions $x:\mathbb{R}\rightarrow \mathbb{R}^{N}$ satisfying the inequality $\left| x\left( t\right) \right| \leq k\cdot h\left( t\right) ,$ $t\in \mathbb{R},$ $k>0$, where $\left| \cdot \right| $ is the euclidean norm in $\mathbb{R}^{N},$ is given. The proof of this result is based on the use of a special function of Lyapunov type, which is often called guiding function. In the particular case $h\equiv 1$, one obtains known results regarding the existence of bounded solutions.
first_indexed 2024-04-09T13:41:16Z
format Article
id doaj.art-1c8e18ef0f084f4b828377fa0aa3fd9f
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:16Z
publishDate 2003-07-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-1c8e18ef0f084f4b828377fa0aa3fd9f2023-05-09T07:52:57ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752003-07-012003131910.14232/ejqtde.2003.1.13159Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functionsC. Avramescu0University of Craiova, Craiova, RomaniaLet $f:\mathbb{R}\times \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ be a continuous function and let $h:\mathbb{R}\rightarrow \mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\dot{x}=f\left( t,x\right) $ admits solutions $x:\mathbb{R}\rightarrow \mathbb{R}^{N}$ satisfying the inequality $\left| x\left( t\right) \right| \leq k\cdot h\left( t\right) ,$ $t\in \mathbb{R},$ $k>0$, where $\left| \cdot \right| $ is the euclidean norm in $\mathbb{R}^{N},$ is given. The proof of this result is based on the use of a special function of Lyapunov type, which is often called guiding function. In the particular case $h\equiv 1$, one obtains known results regarding the existence of bounded solutions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=159
spellingShingle C. Avramescu
Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
Electronic Journal of Qualitative Theory of Differential Equations
title Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
title_full Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
title_fullStr Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
title_full_unstemmed Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
title_short Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
title_sort asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=159
work_keys_str_mv AT cavramescu asymptoticbehaviorofsolutionsofnonlineardifferentialequationsandgeneralizedguidingfunctions