Translocation of a parthenogenesis gene candidate to an alternate carrier chromosome in apomictic Brachiaria humidicola

Abstract Background The apomictic reproductive mode of Brachiaria (syn. Urochloa) forage species allows breeders to faithfully propagate heterozygous genotypes through seed over multiple generations. In Brachiaria, reproductive mode segregates as single dominant locus, the apospory-specific genomic...

Full description

Bibliographic Details
Main Authors: Margaret Worthington, Masumi Ebina, Naoki Yamanaka, Christopher Heffelfinger, Constanza Quintero, Yeny Patricia Zapata, Juan Guillermo Perez, Michael Selvaraj, Manabu Ishitani, Jorge Duitama, Juan Fernando de la Hoz, Idupulapati Rao, Stephen Dellaporta, Joe Tohme, Jacobo Arango
Format: Article
Language:English
Published: BMC 2019-01-01
Series:BMC Genomics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12864-018-5392-4
Description
Summary:Abstract Background The apomictic reproductive mode of Brachiaria (syn. Urochloa) forage species allows breeders to faithfully propagate heterozygous genotypes through seed over multiple generations. In Brachiaria, reproductive mode segregates as single dominant locus, the apospory-specific genomic region (ASGR). The AGSR has been mapped to an area of reduced recombination on Brachiaria decumbens chromosome 5. A primer pair designed within ASGR-BABY BOOM-like (BBML), the candidate gene for the parthenogenesis component of apomixis in Pennisetum squamulatum, was diagnostic for reproductive mode in the closely related species B. ruziziensis, B. brizantha, and B. decumbens. In this study, we used a mapping population of the distantly related commercial species B. humidicola to map the ASGR and test for conservation of ASGR-BBML sequences across Brachiaria species. Results Dense genetic maps were constructed for the maternal and paternal genomes of a hexaploid (2n = 6x = 36) B. humidicola F1 mapping population (n = 102) using genotyping-by-sequencing, simple sequence repeat, amplified fragment length polymorphism, and transcriptome derived single nucleotide polymorphism markers. Comparative genomics with Setaria italica provided confirmation for x = 6 as the base chromosome number of B. humidicola. High resolution molecular karyotyping indicated that the six homologous chromosomes of the sexual female parent paired at random, whereas preferential pairing of subgenomes was observed in the apomictic male parent. Furthermore, evidence for compensated aneuploidy was found in the apomictic parent, with only five homologous linkage groups identified for chromosome 5 and seven homologous linkage groups of chromosome 6. The ASGR mapped to B. humidicola chromosome 1, a region syntenic with chromosomes 1 and 7 of S. italica. The ASGR-BBML specific PCR product cosegregated with the ASGR in the F1 mapping population, despite its location on a different carrier chromosome than B. decumbens. Conclusions The first dense molecular maps of B. humidicola provide strong support for cytogenetic evidence indicating a base chromosome number of six in this species. Furthermore, these results show conservation of the ASGR across the Paniceae in different chromosomal backgrounds and support postulation of the ASGR-BBML as candidate genes for the parthenogenesis component of apomixis.
ISSN:1471-2164