Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study

BackgroundRecent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations i...

Full description

Bibliographic Details
Main Authors: Marion Tonneau, Kim Phan, Venkata S. K. Manem, Cecile Low-Kam, Francis Dutil, Suzanne Kazandjian, Davy Vanderweyen, Justin Panasci, Julie Malo, François Coulombe, Andréanne Gagné, Arielle Elkrief, Wiam Belkaïd, Lisa Di Jorio, Michele Orain, Nicole Bouchard, Thierry Muanza, Frank J. Rybicki, Kam Kafi, David Huntsman, Philippe Joubert, Florent Chandelier, Bertrand Routy
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-07-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2023.1196414/full
_version_ 1827897137216618496
author Marion Tonneau
Marion Tonneau
Kim Phan
Venkata S. K. Manem
Venkata S. K. Manem
Cecile Low-Kam
Francis Dutil
Suzanne Kazandjian
Davy Vanderweyen
Justin Panasci
Julie Malo
François Coulombe
Andréanne Gagné
Arielle Elkrief
Arielle Elkrief
Wiam Belkaïd
Lisa Di Jorio
Michele Orain
Nicole Bouchard
Thierry Muanza
Thierry Muanza
Frank J. Rybicki
Kam Kafi
David Huntsman
Philippe Joubert
Philippe Joubert
Florent Chandelier
Bertrand Routy
Bertrand Routy
author_facet Marion Tonneau
Marion Tonneau
Kim Phan
Venkata S. K. Manem
Venkata S. K. Manem
Cecile Low-Kam
Francis Dutil
Suzanne Kazandjian
Davy Vanderweyen
Justin Panasci
Julie Malo
François Coulombe
Andréanne Gagné
Arielle Elkrief
Arielle Elkrief
Wiam Belkaïd
Lisa Di Jorio
Michele Orain
Nicole Bouchard
Thierry Muanza
Thierry Muanza
Frank J. Rybicki
Kam Kafi
David Huntsman
Philippe Joubert
Philippe Joubert
Florent Chandelier
Bertrand Routy
Bertrand Routy
author_sort Marion Tonneau
collection DOAJ
description BackgroundRecent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers.MethodsRadiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6).ResultsThe best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59.ConclusionWe demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC.
first_indexed 2024-03-12T22:44:53Z
format Article
id doaj.art-1c9b27366e80483d88227a18e19ca975
institution Directory Open Access Journal
issn 2234-943X
language English
last_indexed 2024-03-12T22:44:53Z
publishDate 2023-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj.art-1c9b27366e80483d88227a18e19ca9752023-07-21T07:49:45ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2023-07-011310.3389/fonc.2023.11964141196414Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort studyMarion Tonneau0Marion Tonneau1Kim Phan2Venkata S. K. Manem3Venkata S. K. Manem4Cecile Low-Kam5Francis Dutil6Suzanne Kazandjian7Davy Vanderweyen8Justin Panasci9Julie Malo10François Coulombe11Andréanne Gagné12Arielle Elkrief13Arielle Elkrief14Wiam Belkaïd15Lisa Di Jorio16Michele Orain17Nicole Bouchard18Thierry Muanza19Thierry Muanza20Frank J. Rybicki21Kam Kafi22David Huntsman23Philippe Joubert24Philippe Joubert25Florent Chandelier26Bertrand Routy27Bertrand Routy28Department of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, CanadaUniversité de Médecine, Lille, FranceImagia Canexia Health, Montreal, QC, CanadaInstitut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, CanadaDepartment of Mathematics and Computer Science, University of Quebec at Trois-Rivières, Trois-Rivières, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaDepartment of Medical Oncology, Jewish General Hospital, Montreal, QC, CanadaDepartment of Radiology, Centre Hospitalier de Sherbrooke (CHUS), Sherbrooke, QC, CanadaDepartment of Medical Oncology, Jewish General Hospital, Montreal, QC, CanadaDepartment of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, CanadaInstitut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, CanadaInstitut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, CanadaDepartment of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, CanadaHemato-Oncology Division, Centre Hospitalier de l’université de Montreal, Montreal, QC, CanadaDepartment of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaInstitut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, CanadaDepartment of Oncology, Centre Hospitalier de Sherbrooke (CHUS), Sherbrooke, QC, CanadaDepartment of Medical Oncology, Jewish General Hospital, Montreal, QC, Canada0Department of Radiation Oncology, Lady Davis Institute of the Jewish General Hospital, Montreal, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaInstitut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, Canada1Department of Pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, CanadaImagia Canexia Health, Montreal, QC, CanadaDepartment of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, CanadaHemato-Oncology Division, Centre Hospitalier de l’université de Montreal, Montreal, QC, CanadaBackgroundRecent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers.MethodsRadiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6).ResultsThe best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59.ConclusionWe demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC.https://www.frontiersin.org/articles/10.3389/fonc.2023.1196414/fullradiomicsDeeplearningNSCLCimmunotherapyDeepRadiomics
spellingShingle Marion Tonneau
Marion Tonneau
Kim Phan
Venkata S. K. Manem
Venkata S. K. Manem
Cecile Low-Kam
Francis Dutil
Suzanne Kazandjian
Davy Vanderweyen
Justin Panasci
Julie Malo
François Coulombe
Andréanne Gagné
Arielle Elkrief
Arielle Elkrief
Wiam Belkaïd
Lisa Di Jorio
Michele Orain
Nicole Bouchard
Thierry Muanza
Thierry Muanza
Frank J. Rybicki
Kam Kafi
David Huntsman
Philippe Joubert
Philippe Joubert
Florent Chandelier
Bertrand Routy
Bertrand Routy
Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
Frontiers in Oncology
radiomics
Deeplearning
NSCLC
immunotherapy
DeepRadiomics
title Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_full Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_fullStr Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_full_unstemmed Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_short Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study
title_sort generalization optimizing machine learning to improve ct scan radiomics and assess immune checkpoint inhibitors response in non small cell lung cancer a multicenter cohort study
topic radiomics
Deeplearning
NSCLC
immunotherapy
DeepRadiomics
url https://www.frontiersin.org/articles/10.3389/fonc.2023.1196414/full
work_keys_str_mv AT mariontonneau generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT mariontonneau generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT kimphan generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT venkataskmanem generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT venkataskmanem generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT cecilelowkam generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT francisdutil generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT suzannekazandjian generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT davyvanderweyen generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT justinpanasci generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT juliemalo generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT francoiscoulombe generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT andreannegagne generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT arielleelkrief generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT arielleelkrief generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT wiambelkaid generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT lisadijorio generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT micheleorain generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT nicolebouchard generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT thierrymuanza generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT thierrymuanza generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT frankjrybicki generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT kamkafi generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT davidhuntsman generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT philippejoubert generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT philippejoubert generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT florentchandelier generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT bertrandrouty generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy
AT bertrandrouty generalizationoptimizingmachinelearningtoimprovectscanradiomicsandassessimmunecheckpointinhibitorsresponseinnonsmallcelllungcanceramulticentercohortstudy