Young Stellar Objects, Accretion Disks, and Their Variability with Rubin Observatory LSST

Vera C. Rubin Observatory, through the Legacy Survey of Space and Time (LSST), will allow us to derive a panchromatic view of variability in young stellar objects (YSOs) across all relevant timescales. Indeed, both short-term variability (on timescales of hours to days) and long-term variability (mo...

Full description

Bibliographic Details
Main Authors: R. Bonito, L. Venuti, S. Ustamujic, P. Yoachim, R. A. Street, L. Prisinzano, P. Hartigan, M. G. Guarcello, K. G. Stassun, T. Giannini, E. D. Feigelson, A. Caratti o Garatti, S. Orlando, W. I. Clarkson, P. McGehee, E. C. Bellm, J. E. Gizis
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal Supplement Series
Subjects:
Online Access:https://doi.org/10.3847/1538-4365/acb684
Description
Summary:Vera C. Rubin Observatory, through the Legacy Survey of Space and Time (LSST), will allow us to derive a panchromatic view of variability in young stellar objects (YSOs) across all relevant timescales. Indeed, both short-term variability (on timescales of hours to days) and long-term variability (months to years), predominantly driven by the dynamics of accretion processes in disk-hosting YSOs, can be explored by taking advantage of the multiband filters option available in Rubin LSST, in particular the u , g , r , i filters that enable us to discriminate between photospheric stellar properties and accretion signatures. The homogeneity and depth of sky coverage that will be achieved with LSST will provide us with a unique opportunity to characterize the time evolution of disk accretion as a function of age and varying environmental conditions (e.g., field crowdedness, massive neighbors, metallicity) by targeting different star-forming regions. In this contribution to the Rubin LSST Survey Strategy Optimization Focus Issue, we discuss how implementing a dense observing cadence to explore short-term variability in YSOs represents a key complementary effort to the Wide–Fast–Deep observing mode that will be used to survey the sky over the full duration of the main survey (≈10 yr). The combination of these two modes will be vital to investigate the connection between the inner-disk dynamics and longer-term eruptive variability behaviors, such as those observed on EX Lupi–type objects.
ISSN:0067-0049