Summary: | This study reports the electrochemical synthesis, antimicrobial and catalytic activity of copper-arabinoxylan nanocomposite. The synthesis was achieved without use of any hazardous reducing and stabilizing agent. The spherical copper nanoparticles (size approx. 40 nm) dispersed in the arabinoxylan matrix as they formed and got stabilized. In the absence of arabinoxylan the particles rapidly converted to copper oxide suggesting a high stability for the composite. Electrolysis was carried out with copper plate as the sacrificial anode, carbon rod as the cathode and sodium nitrate (1.00 % in 1 % arabinoxylan suspension) as an electrolyte. The copper nanoparticles dispersed in arabinoxylan were characterized by surface plasmon resonance spectroscopy, X-ray diffraction, electron microscopy and zeta potential measurements. The synthesized composite exhibited good antimicrobial activity against P. aeruginosa, Staph. aureus and E. coli and a catalytic activity in conversion of CO2 to methanol.
|