Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space

Abstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$...

Full description

Bibliographic Details
Main Author: Keomkyo Seo
Format: Article
Language:English
Published: SpringerOpen 2016-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1071-7
_version_ 1819136009437184000
author Keomkyo Seo
author_facet Keomkyo Seo
author_sort Keomkyo Seo
collection DOAJ
description Abstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$ is bounded above by n 2 $n^{2}$ .
first_indexed 2024-12-22T10:28:10Z
format Article
id doaj.art-1cb43f3fa116475e9a4a3ceb2f984c00
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-22T10:28:10Z
publishDate 2016-04-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-1cb43f3fa116475e9a4a3ceb2f984c002022-12-21T18:29:24ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-04-01201611510.1186/s13660-016-1071-7Fundamental tone of minimal hypersurfaces with finite index in hyperbolic spaceKeomkyo Seo0Department of Mathematics, Sookmyung Women’s UniversityAbstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$ is bounded above by n 2 $n^{2}$ .http://link.springer.com/article/10.1186/s13660-016-1071-7minimal hypersurfacefinite indexhyperbolic spacefundamental toneeigenvalue
spellingShingle Keomkyo Seo
Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
Journal of Inequalities and Applications
minimal hypersurface
finite index
hyperbolic space
fundamental tone
eigenvalue
title Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
title_full Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
title_fullStr Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
title_full_unstemmed Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
title_short Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
title_sort fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
topic minimal hypersurface
finite index
hyperbolic space
fundamental tone
eigenvalue
url http://link.springer.com/article/10.1186/s13660-016-1071-7
work_keys_str_mv AT keomkyoseo fundamentaltoneofminimalhypersurfaceswithfiniteindexinhyperbolicspace