Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space
Abstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-04-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-1071-7 |
_version_ | 1819136009437184000 |
---|---|
author | Keomkyo Seo |
author_facet | Keomkyo Seo |
author_sort | Keomkyo Seo |
collection | DOAJ |
description | Abstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$ is bounded above by n 2 $n^{2}$ . |
first_indexed | 2024-12-22T10:28:10Z |
format | Article |
id | doaj.art-1cb43f3fa116475e9a4a3ceb2f984c00 |
institution | Directory Open Access Journal |
issn | 1029-242X |
language | English |
last_indexed | 2024-12-22T10:28:10Z |
publishDate | 2016-04-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-1cb43f3fa116475e9a4a3ceb2f984c002022-12-21T18:29:24ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-04-01201611510.1186/s13660-016-1071-7Fundamental tone of minimal hypersurfaces with finite index in hyperbolic spaceKeomkyo Seo0Department of Mathematics, Sookmyung Women’s UniversityAbstract Let M be a complete minimal hypersurface in hyperbolic space H n + 1 ( − 1 ) $\mathbb {H}^{n+1}(-1)$ with constant sectional curvature −1. We prove that if M has a finite index and finite L 2 $L^{2}$ norm of the second fundamental form, then the fundamental tone λ 1 ( M ) $\lambda_{1} (M)$ is bounded above by n 2 $n^{2}$ .http://link.springer.com/article/10.1186/s13660-016-1071-7minimal hypersurfacefinite indexhyperbolic spacefundamental toneeigenvalue |
spellingShingle | Keomkyo Seo Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space Journal of Inequalities and Applications minimal hypersurface finite index hyperbolic space fundamental tone eigenvalue |
title | Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space |
title_full | Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space |
title_fullStr | Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space |
title_full_unstemmed | Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space |
title_short | Fundamental tone of minimal hypersurfaces with finite index in hyperbolic space |
title_sort | fundamental tone of minimal hypersurfaces with finite index in hyperbolic space |
topic | minimal hypersurface finite index hyperbolic space fundamental tone eigenvalue |
url | http://link.springer.com/article/10.1186/s13660-016-1071-7 |
work_keys_str_mv | AT keomkyoseo fundamentaltoneofminimalhypersurfaceswithfiniteindexinhyperbolicspace |