Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term

In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\...

Full description

Bibliographic Details
Main Author: Haitao Wan
Format: Article
Language:English
Published: Texas State University 2015-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/57/abstr.html
_version_ 1818215725304643584
author Haitao Wan
author_facet Haitao Wan
author_sort Haitao Wan
collection DOAJ
description In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\sigma$ belong to $C^{\alpha}_{\rm loc}(\Omega)$ satisfying $b(x),a(x)>0$, $\sigma(x)\geq0$, $x\in \Omega$, which may vanish or be singular on the boundary. $g\in C^1((0,\infty),(0,\infty))$ satisfies $\lim_{t\to 0^{+}}g(t)=\infty$. Our results include the existence, uniqueness and the exact boundary asymptotic behavior and global asymptotic behavior of the solution.
first_indexed 2024-12-12T06:40:38Z
format Article
id doaj.art-1cb829ded8eb4ec9b20e4912707e96e4
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-12T06:40:38Z
publishDate 2015-03-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-1cb829ded8eb4ec9b20e4912707e96e42022-12-22T00:34:21ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-03-01201557,133Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection termHaitao Wan0 Lanzhou Univ., Lanzhou, China In this article, we consider the problem $$ -\Delta u =b(x)g(u)+ \lambda a(x)|\nabla u|^{q}+\sigma(x),\; u > 0,\; x\in \Omega,\quad u|_{\partial \Omega }= 0 $$ with $\lambda\in\mathbb{R}$, $q\in [0, 2]$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^{N}$. The weight functions $b, a,\sigma$ belong to $C^{\alpha}_{\rm loc}(\Omega)$ satisfying $b(x),a(x)>0$, $\sigma(x)\geq0$, $x\in \Omega$, which may vanish or be singular on the boundary. $g\in C^1((0,\infty),(0,\infty))$ satisfies $\lim_{t\to 0^{+}}g(t)=\infty$. Our results include the existence, uniqueness and the exact boundary asymptotic behavior and global asymptotic behavior of the solution.http://ejde.math.txstate.edu/Volumes/2015/57/abstr.htmlSingular Dirichlet problemKaramata regular variation theoryconvection termboundary asymptotic behaviorglobal asymptotic behavior
spellingShingle Haitao Wan
Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
Electronic Journal of Differential Equations
Singular Dirichlet problem
Karamata regular variation theory
convection term
boundary asymptotic behavior
global asymptotic behavior
title Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_full Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_fullStr Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_full_unstemmed Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_short Existence and asymptotic behavior of a unique solution to a singular Dirichlet boundary-value problem with a convection term
title_sort existence and asymptotic behavior of a unique solution to a singular dirichlet boundary value problem with a convection term
topic Singular Dirichlet problem
Karamata regular variation theory
convection term
boundary asymptotic behavior
global asymptotic behavior
url http://ejde.math.txstate.edu/Volumes/2015/57/abstr.html
work_keys_str_mv AT haitaowan existenceandasymptoticbehaviorofauniquesolutiontoasingulardirichletboundaryvalueproblemwithaconvectionterm