Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources
In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-01-01
|
Series: | Metals |
Subjects: | |
Online Access: | http://www.mdpi.com/2075-4701/8/1/78 |
_version_ | 1819037128413151232 |
---|---|
author | Songyan Yin Ravindra Rajarao Farshid Pahlevani Veena Sahajwalla |
author_facet | Songyan Yin Ravindra Rajarao Farshid Pahlevani Veena Sahajwalla |
author_sort | Songyan Yin |
collection | DOAJ |
description | In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel. |
first_indexed | 2024-12-21T08:16:29Z |
format | Article |
id | doaj.art-1ccd9f350ae943e1a94ddb4f328071c4 |
institution | Directory Open Access Journal |
issn | 2075-4701 |
language | English |
last_indexed | 2024-12-21T08:16:29Z |
publishDate | 2018-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Metals |
spelling | doaj.art-1ccd9f350ae943e1a94ddb4f328071c42022-12-21T19:10:33ZengMDPI AGMetals2075-47012018-01-01817810.3390/met8010078met8010078Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon ResourcesSongyan Yin0Ravindra Rajarao1Farshid Pahlevani2Veena Sahajwalla3Centre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and Engineering, UNSW Australia, Sydney NSW 2052, AustraliaCentre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and Engineering, UNSW Australia, Sydney NSW 2052, AustraliaCentre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and Engineering, UNSW Australia, Sydney NSW 2052, AustraliaCentre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and Engineering, UNSW Australia, Sydney NSW 2052, AustraliaIn recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.http://www.mdpi.com/2075-4701/8/1/78sustainable steel carburizationpackaging plastic wastecarbon resourcesmethane |
spellingShingle | Songyan Yin Ravindra Rajarao Farshid Pahlevani Veena Sahajwalla Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources Metals sustainable steel carburization packaging plastic waste carbon resources methane |
title | Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources |
title_full | Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources |
title_fullStr | Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources |
title_full_unstemmed | Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources |
title_short | Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources |
title_sort | sustainable steel carburization by using snack packaging plastic waste as carbon resources |
topic | sustainable steel carburization packaging plastic waste carbon resources methane |
url | http://www.mdpi.com/2075-4701/8/1/78 |
work_keys_str_mv | AT songyanyin sustainablesteelcarburizationbyusingsnackpackagingplasticwasteascarbonresources AT ravindrarajarao sustainablesteelcarburizationbyusingsnackpackagingplasticwasteascarbonresources AT farshidpahlevani sustainablesteelcarburizationbyusingsnackpackagingplasticwasteascarbonresources AT veenasahajwalla sustainablesteelcarburizationbyusingsnackpackagingplasticwasteascarbonresources |