A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO) algorithm adapte...

Full description

Bibliographic Details
Main Authors: R. Venkata Rao, Vivek Patel
Format: Article
Language:English
Published: Growing Science 2014-01-01
Series:International Journal of Industrial Engineering Computations
Subjects:
Online Access:http://www.growingscience.com/ijiec/Vol5/IJIEC_2013_44.pdf
Description
Summary:The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO) algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front) maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009) competition. The performance assessment is done by using the inverted generational distance (IGD) measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.
ISSN:1923-2926
1923-2934