Research on dynamic path planning algorithm of spacecraft cluster based on cooperative particle swarm algorithm

In order to solve the problem of path planning for the spacecraft cluster to reach the dynamic target point under the premise of considering obstacle avoidance. In view of the fixed search radius, it will be difficult for the spacecraft to find a better value when it is close to the target point. Th...

Full description

Bibliographic Details
Main Authors: Zhang Zhen, Fang Qun, Song Jinfeng, Zhang Xiuwei, Zhu Zhanxia
Format: Article
Language:zho
Published: EDP Sciences 2021-12-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2021/06/jnwpu2021396p1222/jnwpu2021396p1222.html
Description
Summary:In order to solve the problem of path planning for the spacecraft cluster to reach the dynamic target point under the premise of considering obstacle avoidance. In view of the fixed search radius, it will be difficult for the spacecraft to find a better value when it is close to the target point. This paper converts the orbital dynamics of each member spacecraft into an optimization problem considering constraints, and proposes an improved CPSO algorithm based on coordination. The path planning method of the traditional particle swarm optimization (CPSO): The dynamic radius search method that changes the search radius by changing the distance between them, and improves the CPSO algorithm based on this. The improved CPSO algorithm autonomously finds the optimal path of each member spacecraft at the current moment through the dynamic search radius, thereby obtaining the optimal solution for the dynamic path planning of the spacecraft cluster in three-dimensional space. The simulation results show that the use of the improved CPSO algorithm can not only obtain the optimal solution to the spacecraft cluster dynamic path planning problem, but also greatly reduce the fuel consumption in its path planning and improve the path stability of each member spacecraft.
ISSN:1000-2758
2609-7125