Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
<p>The number concentration of cloud particles is a key quantity for understanding aerosol–cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist regarding the ice...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-10-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/14327/2018/acp-18-14327-2018.pdf |
_version_ | 1817987600619667456 |
---|---|
author | O. Sourdeval O. Sourdeval E. Gryspeerdt M. Krämer T. Goren J. Delanoë A. Afchine F. Hemmer J. Quaas |
author_facet | O. Sourdeval O. Sourdeval E. Gryspeerdt M. Krämer T. Goren J. Delanoë A. Afchine F. Hemmer J. Quaas |
author_sort | O. Sourdeval |
collection | DOAJ |
description | <p>The number concentration of cloud particles is a
key quantity for understanding aerosol–cloud interactions and describing
clouds in climate and numerical weather prediction models. In contrast with
recent advances for liquid clouds, few observational constraints exist
regarding the ice crystal number concentration (<i>N</i><sub>i</sub>). This study
investigates how combined lidar–radar measurements can be used to provide
satellite estimates of <i>N</i><sub>i</sub>, using a methodology that constrains
moments of a parameterized particle size distribution (PSD). The operational
liDAR–raDAR (DARDAR) product serves as an existing base for this method,
which focuses on ice clouds with temperatures <i>T</i><sub>c</sub> < −30 °C.</p><p>Theoretical considerations demonstrate the capability for accurate retrievals
of <i>N</i><sub>i</sub>, apart from a possible bias in the concentration in small
crystals when <i>T</i><sub>c</sub><i>≳</i> − 50 °C, due to the assumption of
a monomodal PSD shape in the current method. This is verified via a
comparison of satellite estimates to coincident in situ measurements, which additionally
demonstrates the sufficient sensitivity of lidar–radar observations to
<i>N</i><sub>i</sub>. Following these results, satellite estimates of
<i>N</i><sub>i</sub> are evaluated in the context of a case study and a preliminary
climatological analysis based on 10 years of global data. Despite a lack
of other large-scale references, this evaluation shows a reasonable physical
consistency in <i>N</i><sub>i</sub> spatial distribution patterns. Notably,
increases in <i>N</i><sub>i</sub> are found towards cold temperatures and, more
significantly, in the presence of strong updrafts, such as those related to
convective or orographic uplifts. Further evaluation and improvement of this
method are necessary, although these results already constitute a first encouraging
step towards large-scale observational constraints for <i>N</i><sub>i</sub>. Part 2
of this series uses this new dataset to examine the controls on
<i>N</i><sub>i</sub>.</p> |
first_indexed | 2024-04-14T00:23:27Z |
format | Article |
id | doaj.art-1cd3c6c777ed496db2bb659bb63e6725 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-14T00:23:27Z |
publishDate | 2018-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-1cd3c6c777ed496db2bb659bb63e67252022-12-22T02:22:51ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-10-0118143271435010.5194/acp-18-14327-2018Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluationO. Sourdeval0O. Sourdeval1E. Gryspeerdt2M. Krämer3T. Goren4J. Delanoë5A. Afchine6F. Hemmer7J. Quaas8Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germanynow at: Laboratoire d'Optique Atmosphérique, Université Lille1, Villeneuve d'Ascq, FranceSpace and Atmospheric Physics Group, Imperial College London, London, UKForschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Jülich, GermanyLeipzig Institute for Meteorology, Universität Leipzig, Leipzig, GermanyLATMOS/UVSQ/IPSL/CNRS, Guyancourt, FranceForschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Jülich, GermanyLaboratoire d'Optique Atmosphérique, Université Lille1, Villeneuve d'Ascq, FranceLeipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany<p>The number concentration of cloud particles is a key quantity for understanding aerosol–cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist regarding the ice crystal number concentration (<i>N</i><sub>i</sub>). This study investigates how combined lidar–radar measurements can be used to provide satellite estimates of <i>N</i><sub>i</sub>, using a methodology that constrains moments of a parameterized particle size distribution (PSD). The operational liDAR–raDAR (DARDAR) product serves as an existing base for this method, which focuses on ice clouds with temperatures <i>T</i><sub>c</sub> < −30 °C.</p><p>Theoretical considerations demonstrate the capability for accurate retrievals of <i>N</i><sub>i</sub>, apart from a possible bias in the concentration in small crystals when <i>T</i><sub>c</sub><i>≳</i> − 50 °C, due to the assumption of a monomodal PSD shape in the current method. This is verified via a comparison of satellite estimates to coincident in situ measurements, which additionally demonstrates the sufficient sensitivity of lidar–radar observations to <i>N</i><sub>i</sub>. Following these results, satellite estimates of <i>N</i><sub>i</sub> are evaluated in the context of a case study and a preliminary climatological analysis based on 10 years of global data. Despite a lack of other large-scale references, this evaluation shows a reasonable physical consistency in <i>N</i><sub>i</sub> spatial distribution patterns. Notably, increases in <i>N</i><sub>i</sub> are found towards cold temperatures and, more significantly, in the presence of strong updrafts, such as those related to convective or orographic uplifts. Further evaluation and improvement of this method are necessary, although these results already constitute a first encouraging step towards large-scale observational constraints for <i>N</i><sub>i</sub>. Part 2 of this series uses this new dataset to examine the controls on <i>N</i><sub>i</sub>.</p>https://www.atmos-chem-phys.net/18/14327/2018/acp-18-14327-2018.pdf |
spellingShingle | O. Sourdeval O. Sourdeval E. Gryspeerdt M. Krämer T. Goren J. Delanoë A. Afchine F. Hemmer J. Quaas Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation Atmospheric Chemistry and Physics |
title | Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation |
title_full | Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation |
title_fullStr | Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation |
title_full_unstemmed | Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation |
title_short | Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation |
title_sort | ice crystal number concentration estimates from lidar radar satellite remote sensing part 1 method and evaluation |
url | https://www.atmos-chem-phys.net/18/14327/2018/acp-18-14327-2018.pdf |
work_keys_str_mv | AT osourdeval icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT osourdeval icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT egryspeerdt icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT mkramer icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT tgoren icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT jdelanoe icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT aafchine icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT fhemmer icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation AT jquaas icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation |