Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation

<p>The number concentration of cloud particles is a key quantity for understanding aerosol–cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist regarding the ice...

Full description

Bibliographic Details
Main Authors: O. Sourdeval, E. Gryspeerdt, M. Krämer, T. Goren, J. Delanoë, A. Afchine, F. Hemmer, J. Quaas
Format: Article
Language:English
Published: Copernicus Publications 2018-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/14327/2018/acp-18-14327-2018.pdf
_version_ 1817987600619667456
author O. Sourdeval
O. Sourdeval
E. Gryspeerdt
M. Krämer
T. Goren
J. Delanoë
A. Afchine
F. Hemmer
J. Quaas
author_facet O. Sourdeval
O. Sourdeval
E. Gryspeerdt
M. Krämer
T. Goren
J. Delanoë
A. Afchine
F. Hemmer
J. Quaas
author_sort O. Sourdeval
collection DOAJ
description <p>The number concentration of cloud particles is a key quantity for understanding aerosol–cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist regarding the ice crystal number concentration (<i>N</i><sub>i</sub>). This study investigates how combined lidar–radar measurements can be used to provide satellite estimates of <i>N</i><sub>i</sub>, using a methodology that constrains moments of a parameterized particle size distribution (PSD). The operational liDAR–raDAR (DARDAR) product serves as an existing base for this method, which focuses on ice clouds with temperatures <i>T</i><sub>c</sub> &lt; −30&thinsp;°C.</p><p>Theoretical considerations demonstrate the capability for accurate retrievals of <i>N</i><sub>i</sub>, apart from a possible bias in the concentration in small crystals when <i>T</i><sub>c</sub><i>≳</i> − 50&thinsp;°C, due to the assumption of a monomodal PSD shape in the current method. This is verified via a comparison of satellite estimates to coincident in situ measurements, which additionally demonstrates the sufficient sensitivity of lidar–radar observations to <i>N</i><sub>i</sub>. Following these results, satellite estimates of <i>N</i><sub>i</sub> are evaluated in the context of a case study and a preliminary climatological analysis based on 10 years of global data. Despite a lack of other large-scale references, this evaluation shows a reasonable physical consistency in <i>N</i><sub>i</sub> spatial distribution patterns. Notably, increases in <i>N</i><sub>i</sub> are found towards cold temperatures and, more significantly, in the presence of strong updrafts, such as those related to convective or orographic uplifts. Further evaluation and improvement of this method are necessary, although these results already constitute a first encouraging step towards large-scale observational constraints for <i>N</i><sub>i</sub>. Part 2 of this series uses this new dataset to examine the controls on <i>N</i><sub>i</sub>.</p>
first_indexed 2024-04-14T00:23:27Z
format Article
id doaj.art-1cd3c6c777ed496db2bb659bb63e6725
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-14T00:23:27Z
publishDate 2018-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-1cd3c6c777ed496db2bb659bb63e67252022-12-22T02:22:51ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-10-0118143271435010.5194/acp-18-14327-2018Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluationO. Sourdeval0O. Sourdeval1E. Gryspeerdt2M. Krämer3T. Goren4J. Delanoë5A. Afchine6F. Hemmer7J. Quaas8Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germanynow at: Laboratoire d'Optique Atmosphérique, Université Lille1, Villeneuve d'Ascq, FranceSpace and Atmospheric Physics Group, Imperial College London, London, UKForschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Jülich, GermanyLeipzig Institute for Meteorology, Universität Leipzig, Leipzig, GermanyLATMOS/UVSQ/IPSL/CNRS, Guyancourt, FranceForschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Jülich, GermanyLaboratoire d'Optique Atmosphérique, Université Lille1, Villeneuve d'Ascq, FranceLeipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany<p>The number concentration of cloud particles is a key quantity for understanding aerosol–cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist regarding the ice crystal number concentration (<i>N</i><sub>i</sub>). This study investigates how combined lidar–radar measurements can be used to provide satellite estimates of <i>N</i><sub>i</sub>, using a methodology that constrains moments of a parameterized particle size distribution (PSD). The operational liDAR–raDAR (DARDAR) product serves as an existing base for this method, which focuses on ice clouds with temperatures <i>T</i><sub>c</sub> &lt; −30&thinsp;°C.</p><p>Theoretical considerations demonstrate the capability for accurate retrievals of <i>N</i><sub>i</sub>, apart from a possible bias in the concentration in small crystals when <i>T</i><sub>c</sub><i>≳</i> − 50&thinsp;°C, due to the assumption of a monomodal PSD shape in the current method. This is verified via a comparison of satellite estimates to coincident in situ measurements, which additionally demonstrates the sufficient sensitivity of lidar–radar observations to <i>N</i><sub>i</sub>. Following these results, satellite estimates of <i>N</i><sub>i</sub> are evaluated in the context of a case study and a preliminary climatological analysis based on 10 years of global data. Despite a lack of other large-scale references, this evaluation shows a reasonable physical consistency in <i>N</i><sub>i</sub> spatial distribution patterns. Notably, increases in <i>N</i><sub>i</sub> are found towards cold temperatures and, more significantly, in the presence of strong updrafts, such as those related to convective or orographic uplifts. Further evaluation and improvement of this method are necessary, although these results already constitute a first encouraging step towards large-scale observational constraints for <i>N</i><sub>i</sub>. Part 2 of this series uses this new dataset to examine the controls on <i>N</i><sub>i</sub>.</p>https://www.atmos-chem-phys.net/18/14327/2018/acp-18-14327-2018.pdf
spellingShingle O. Sourdeval
O. Sourdeval
E. Gryspeerdt
M. Krämer
T. Goren
J. Delanoë
A. Afchine
F. Hemmer
J. Quaas
Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
Atmospheric Chemistry and Physics
title Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
title_full Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
title_fullStr Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
title_full_unstemmed Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
title_short Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
title_sort ice crystal number concentration estimates from lidar radar satellite remote sensing part 1 method and evaluation
url https://www.atmos-chem-phys.net/18/14327/2018/acp-18-14327-2018.pdf
work_keys_str_mv AT osourdeval icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT osourdeval icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT egryspeerdt icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT mkramer icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT tgoren icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT jdelanoe icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT aafchine icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT fhemmer icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation
AT jquaas icecrystalnumberconcentrationestimatesfromlidarradarsatelliteremotesensingpart1methodandevaluation