Generic Beauville’s Conjecture

Let $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$ . We prove this conjecture if...

Full description

Bibliographic Details
Main Authors: Izzet Coskun, Eric Larson, Isabel Vogt
Format: Article
Language:English
Published: Cambridge University Press 2024-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424000215/type/journal_article
_version_ 1797219370780327936
author Izzet Coskun
Eric Larson
Isabel Vogt
author_facet Izzet Coskun
Eric Larson
Isabel Vogt
author_sort Izzet Coskun
collection DOAJ
description Let $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$ . We prove this conjecture if the map $\alpha $ is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y.
first_indexed 2024-04-24T12:32:34Z
format Article
id doaj.art-1cd534a73df34452898100345c39cc99
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-24T12:32:34Z
publishDate 2024-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-1cd534a73df34452898100345c39cc992024-04-08T02:09:17ZengCambridge University PressForum of Mathematics, Sigma2050-50942024-01-011210.1017/fms.2024.21Generic Beauville’s ConjectureIzzet Coskun0https://orcid.org/0000-0003-0775-5783Eric Larson1https://orcid.org/0000-0002-8379-9879Isabel Vogt2https://orcid.org/0000-0003-1152-9244Department of Mathematics, Statistics, and CS, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607, United States; E-mail:Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, United States; E-mail:Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, United StatesLet $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$ . We prove this conjecture if the map $\alpha $ is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y.https://www.cambridge.org/core/product/identifier/S2050509424000215/type/journal_article14H6014D20
spellingShingle Izzet Coskun
Eric Larson
Isabel Vogt
Generic Beauville’s Conjecture
Forum of Mathematics, Sigma
14H60
14D20
title Generic Beauville’s Conjecture
title_full Generic Beauville’s Conjecture
title_fullStr Generic Beauville’s Conjecture
title_full_unstemmed Generic Beauville’s Conjecture
title_short Generic Beauville’s Conjecture
title_sort generic beauville s conjecture
topic 14H60
14D20
url https://www.cambridge.org/core/product/identifier/S2050509424000215/type/journal_article
work_keys_str_mv AT izzetcoskun genericbeauvillesconjecture
AT ericlarson genericbeauvillesconjecture
AT isabelvogt genericbeauvillesconjecture