Generic Beauville’s Conjecture
Let $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$ . We prove this conjecture if...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2024-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509424000215/type/journal_article |
_version_ | 1797219370780327936 |
---|---|
author | Izzet Coskun Eric Larson Isabel Vogt |
author_facet | Izzet Coskun Eric Larson Isabel Vogt |
author_sort | Izzet Coskun |
collection | DOAJ |
description | Let
$\alpha \colon X \to Y$
be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under
$\alpha $
is semistable if the genus of Y is at least
$1$
and stable if the genus of Y is at least
$2$
. We prove this conjecture if the map
$\alpha $
is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y. |
first_indexed | 2024-04-24T12:32:34Z |
format | Article |
id | doaj.art-1cd534a73df34452898100345c39cc99 |
institution | Directory Open Access Journal |
issn | 2050-5094 |
language | English |
last_indexed | 2024-04-24T12:32:34Z |
publishDate | 2024-01-01 |
publisher | Cambridge University Press |
record_format | Article |
series | Forum of Mathematics, Sigma |
spelling | doaj.art-1cd534a73df34452898100345c39cc992024-04-08T02:09:17ZengCambridge University PressForum of Mathematics, Sigma2050-50942024-01-011210.1017/fms.2024.21Generic Beauville’s ConjectureIzzet Coskun0https://orcid.org/0000-0003-0775-5783Eric Larson1https://orcid.org/0000-0002-8379-9879Isabel Vogt2https://orcid.org/0000-0003-1152-9244Department of Mathematics, Statistics, and CS, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607, United States; E-mail:Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, United States; E-mail:Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, United StatesLet $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$ . We prove this conjecture if the map $\alpha $ is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y.https://www.cambridge.org/core/product/identifier/S2050509424000215/type/journal_article14H6014D20 |
spellingShingle | Izzet Coskun Eric Larson Isabel Vogt Generic Beauville’s Conjecture Forum of Mathematics, Sigma 14H60 14D20 |
title | Generic Beauville’s Conjecture |
title_full | Generic Beauville’s Conjecture |
title_fullStr | Generic Beauville’s Conjecture |
title_full_unstemmed | Generic Beauville’s Conjecture |
title_short | Generic Beauville’s Conjecture |
title_sort | generic beauville s conjecture |
topic | 14H60 14D20 |
url | https://www.cambridge.org/core/product/identifier/S2050509424000215/type/journal_article |
work_keys_str_mv | AT izzetcoskun genericbeauvillesconjecture AT ericlarson genericbeauvillesconjecture AT isabelvogt genericbeauvillesconjecture |