Summary: | In the upper Tesso Valley the folded contact between Piemonte Zone ophiolites and Sesia-Lanzo Zone continental crust is exposed. Here serpentinites, metabasites, calcschists and fine-grained gneisses are deformed by four ductile superposed groups of structures, associated with different mineral assemblages. Different serpentinite lithologies have been recognized and studied in detail. Mylonitic D2 structures are pervasive and mineral assemblages point to re-equilibration at T of 450 ± 50 <inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and P of 0.8 ± 0.3 GPa, under blueschist/epidote amphibolite-facies conditions. Pre-D2 structures and mineral assemblages are relics within S2 and indicate a re-equilibration under eclogite-facies conditions, at T of 570 ± 50 <inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C and P > 1.8 GPa. Post-D2 occurs under greenschist-facies conditions. Numerical modeling of a subduction zone allows exploration of the geodynamic context in which such PT path could have developed, and to make hypotheses about the possible timing of such a scenario, in agreement with the timing generally proposed for the Alpine subduction and collision. Model predictions indicate that pre-D2 mineral assemblages may have developed during Paleocene at 60–90 km depth and 115–145 km from the trench, or, alternatively, during lower Eocene at ca. 70–90 km depth, and 135–160 km from the trench.
|