T cell–derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death

TNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1’s death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF t...

Full description

Bibliographic Details
Main Authors: Nicholas Chun, Rosalind L. Ang, Mark Chan, Robert L. Fairchild, William M. Baldwin III, Julian K. Horwitz, Jesse D. Gelles, Jerry Edward Chipuk, Michelle A. Kelliher, Vasile I. Pavlov, Yansui Li, Dirk Homann, Peter S. Heeger, Adrian T. Ting
Format: Article
Language:English
Published: American Society for Clinical investigation 2021-12-01
Series:JCI Insight
Subjects:
Online Access:https://doi.org/10.1172/jci.insight.148643
Description
Summary:TNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1’s death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell–dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered. We show that TNF released by T cells is necessary and sufficient to activate RIPK1-dependent cell death in target cells and thereby mediate target cell cytolysis independently of T cell frequency. Activation of the RIPK1-dependent cell death program in target cells by T cell–derived TNF accelerates murine cardiac allograft rejection and synergizes with anti-PD1 administration to destroy checkpoint blockade–resistant murine melanoma. Together, the findings uncover a distinct immunological role for TNF released by cytotoxic effector T cells following cognate interactions with their antigenic targets. Manipulating T cell TNF and/or target cell susceptibility to RIPK1-dependent cell death can be exploited to either mitigate or augment T cell–dependent destruction of allografts and malignancies to improve outcomes.
ISSN:2379-3708