Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>

In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type...

Full description

Bibliographic Details
Main Authors: Marko Kostić, Wei-Shih Du, Vladimir E. Fedorov
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/21/2825
_version_ 1797512057368608768
author Marko Kostić
Wei-Shih Du
Vladimir E. Fedorov
author_facet Marko Kostić
Wei-Shih Du
Vladimir E. Fedorov
author_sort Marko Kostić
collection DOAJ
description In this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>:</mo><mi mathvariant="sans-serif">Λ</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∅</mo><mo>≠</mo><mi mathvariant="sans-serif">Λ</mi><mo>⊆</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula><i> X</i> and <i>Y</i> are complex Banach spaces, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is a binary relation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>.</mo></mrow></semantics></math></inline-formula> We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-periodic functions and Weyl-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.
first_indexed 2024-03-10T05:56:31Z
format Article
id doaj.art-1cfb2a52efde411cadce97ce5aca5998
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T05:56:31Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-1cfb2a52efde411cadce97ce5aca59982023-11-22T21:19:23ZengMDPI AGMathematics2227-73902021-11-01921282510.3390/math9212825Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>Marko Kostić0Wei-Shih Du1Vladimir E. Fedorov2Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, SerbiaDepartment of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, TaiwanMathematical Analysis Department, Chelyabinsk State University, Kashirin Brothers St. 129, 454001 Chelyabinsk, RussiaIn this paper, we investigate various classes of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>:</mo><mi mathvariant="sans-serif">Λ</mi><mo>×</mo><mi>X</mi><mo>→</mo><mi>Y</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∅</mo><mo>≠</mo><mi mathvariant="sans-serif">Λ</mi><mo>⊆</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula><i> X</i> and <i>Y</i> are complex Banach spaces, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is a binary relation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mo>.</mo></mrow></semantics></math></inline-formula> We work in the general setting of Lebesgue spaces with variable exponents. The main structural properties of multi-dimensional Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions, like the translation invariance, the convolution invariance and the invariance under the actions of convolution products, are clarified. We examine connections of Doss <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></semantics></math></inline-formula>-periodic functions and Weyl-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-almost periodic type functions in the multi-dimensional setting. Certain applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are given.https://www.mdpi.com/2227-7390/9/21/2825Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>Lebesgue spaces with variable exponentsabstract Volterra integro-differential equations
spellingShingle Marko Kostić
Wei-Shih Du
Vladimir E. Fedorov
Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
Mathematics
Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>
Lebesgue spaces with variable exponents
abstract Volterra integro-differential equations
title Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_full Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_fullStr Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_full_unstemmed Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_short Doss <i>ρ</i>-Almost Periodic Type Functions in <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula><sup><i>n</i></sup>
title_sort doss i ρ i almost periodic type functions in inline formula math display inline semantics mrow mi mathvariant double struck r mi mrow semantics math inline formula sup i n i sup
topic Doss <i>ρ</i>-almost periodic type functions in ℝ<sup><i>n</i></sup>
Lebesgue spaces with variable exponents
abstract Volterra integro-differential equations
url https://www.mdpi.com/2227-7390/9/21/2825
work_keys_str_mv AT markokostic dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup
AT weishihdu dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup
AT vladimirefedorov dossirialmostperiodictypefunctionsininlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformulasupinisup