Uniform Second-Order Difference Method for a Singularly Perturbed Three-Point Boundary Value Problem
<p/> <p>We consider a singularly perturbed one-dimensional convection-diffusion three-point boundary value problem with zeroth-order reduced equation. The monotone operator is combined with the piecewise uniform Shishkin-type meshes. We show that the scheme is second-order convergent, in...
Hlavní autor: | Çakır Musa |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
SpringerOpen
2010-01-01
|
Edice: | Advances in Difference Equations |
On-line přístup: | http://www.advancesindifferenceequations.com/content/2010/102484 |
Podobné jednotky
-
A Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem
Autor: Musa Çakır, a další
Vydáno: (2010-01-01) -
Positive solutions of second order semipositone singular three-point boundary value problems
Autor: Yingxin Guo
Vydáno: (2009-01-01) -
Three point boundary value problem for singularly perturbed semilinear differential equations
Autor: Robert Vrabel
Vydáno: (2009-12-01) -
Upper and lower solutions for a second-order three-point singular boundary-value problem
Autor: Qiumei Zhang, a další
Vydáno: (2009-09-01) -
Non-polynomial septic spline method for singularly perturbed two point boundary value problems of order three
Autor: Aynalem Tafere Chekole, a další
Vydáno: (2019-12-01)