Uniform Second-Order Difference Method for a Singularly Perturbed Three-Point Boundary Value Problem
<p/> <p>We consider a singularly perturbed one-dimensional convection-diffusion three-point boundary value problem with zeroth-order reduced equation. The monotone operator is combined with the piecewise uniform Shishkin-type meshes. We show that the scheme is second-order convergent, in...
Tác giả chính: | Çakır Musa |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
SpringerOpen
2010-01-01
|
Loạt: | Advances in Difference Equations |
Truy cập trực tuyến: | http://www.advancesindifferenceequations.com/content/2010/102484 |
Những quyển sách tương tự
-
A Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem
Bằng: Musa Çakır, et al.
Được phát hành: (2010-01-01) -
Positive solutions of second order semipositone singular three-point boundary value problems
Bằng: Yingxin Guo
Được phát hành: (2009-01-01) -
Three point boundary value problem for singularly perturbed semilinear differential equations
Bằng: Robert Vrabel
Được phát hành: (2009-12-01) -
Upper and lower solutions for a second-order three-point singular boundary-value problem
Bằng: Qiumei Zhang, et al.
Được phát hành: (2009-09-01) -
Non-polynomial septic spline method for singularly perturbed two point boundary value problems of order three
Bằng: Aynalem Tafere Chekole, et al.
Được phát hành: (2019-12-01)