Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation

Data assimilation (DA) combines incomplete background values obtained via chemical transport model predictions with observational information. Several 3-Dimensional variational (3DVAR) and sequential methods (e.g., ensemble Kalman filter (EnKF)) are used to define model errors and build a background...

Full description

Bibliographic Details
Main Authors: Soon-Young Park, Uzzal Kumar Dash, Jinhyeok Yu
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/2/160
_version_ 1797482850596945920
author Soon-Young Park
Uzzal Kumar Dash
Jinhyeok Yu
author_facet Soon-Young Park
Uzzal Kumar Dash
Jinhyeok Yu
author_sort Soon-Young Park
collection DOAJ
description Data assimilation (DA) combines incomplete background values obtained via chemical transport model predictions with observational information. Several 3-Dimensional variational (3DVAR) and sequential methods (e.g., ensemble Kalman filter (EnKF)) are used to define model errors and build a background error covariance (BEC) and are important factors affecting the prediction performance of DA. The BEC determines the spatial range, where observation concentration is reflected in the model when DA is applied to an air pollution transport model. However, studies investigating the characteristics of BEC using air quality models remain lacking. In this study, horizontal length scale (HLS) and vertical length scale (VLS) analyses of a BEC were applied to EnKF and ensemble square root filter (EnSRF), respectively, and two ensemble-based DA methods were performed; the characteristics were compared with those of a BEC applied to 3DVAR. The results of 6 h PM<sub>2.5</sub> predictions performed for 42 days were evaluated for a control run without DA (CTR), 3DVAR, EnKF, and EnSRF. HLS and VLS respectively exhibited a high correlation with the ground wind speed and with the planetary boundary layer height for diurnal and daily variations; EnKF and EnSRF exhibited superior performances among all the methods. The root mean square errors were 11.9 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and 11.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for EnKF and EnSRF, respectively, while those for 3DVAR and CTR were 12.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and 18.3 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. Thus, we proposed a simple method to find a Gaussian function that best described the error correlation of the BEC based on the physical distance.
first_indexed 2024-03-09T22:38:25Z
format Article
id doaj.art-1cfdf031b1fd41a4befb64574d3df014
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-09T22:38:25Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-1cfdf031b1fd41a4befb64574d3df0142023-11-23T18:43:11ZengMDPI AGAtmosphere2073-44332022-01-0113216010.3390/atmos13020160Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data AssimilationSoon-Young Park0Uzzal Kumar Dash1Jinhyeok Yu2Institute of Environmental Studies, Pusan National University, Busan 46241, KoreaSchool of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, KoreaSchool of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, KoreaData assimilation (DA) combines incomplete background values obtained via chemical transport model predictions with observational information. Several 3-Dimensional variational (3DVAR) and sequential methods (e.g., ensemble Kalman filter (EnKF)) are used to define model errors and build a background error covariance (BEC) and are important factors affecting the prediction performance of DA. The BEC determines the spatial range, where observation concentration is reflected in the model when DA is applied to an air pollution transport model. However, studies investigating the characteristics of BEC using air quality models remain lacking. In this study, horizontal length scale (HLS) and vertical length scale (VLS) analyses of a BEC were applied to EnKF and ensemble square root filter (EnSRF), respectively, and two ensemble-based DA methods were performed; the characteristics were compared with those of a BEC applied to 3DVAR. The results of 6 h PM<sub>2.5</sub> predictions performed for 42 days were evaluated for a control run without DA (CTR), 3DVAR, EnKF, and EnSRF. HLS and VLS respectively exhibited a high correlation with the ground wind speed and with the planetary boundary layer height for diurnal and daily variations; EnKF and EnSRF exhibited superior performances among all the methods. The root mean square errors were 11.9 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and 11.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> for EnKF and EnSRF, respectively, while those for 3DVAR and CTR were 12.6 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> and 18.3 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">g</mi><mo> </mo><mi mathvariant="normal">m</mi></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, respectively. Thus, we proposed a simple method to find a Gaussian function that best described the error correlation of the BEC based on the physical distance.https://www.mdpi.com/2073-4433/13/2/160data assimilationensemble Kalman filterbackground error covariancelength scale analysis
spellingShingle Soon-Young Park
Uzzal Kumar Dash
Jinhyeok Yu
Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation
Atmosphere
data assimilation
ensemble Kalman filter
background error covariance
length scale analysis
title Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation
title_full Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation
title_fullStr Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation
title_full_unstemmed Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation
title_short Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation
title_sort length scale analyses of background error covariances for enkf and ensrf data assimilation
topic data assimilation
ensemble Kalman filter
background error covariance
length scale analysis
url https://www.mdpi.com/2073-4433/13/2/160
work_keys_str_mv AT soonyoungpark lengthscaleanalysesofbackgrounderrorcovariancesforenkfandensrfdataassimilation
AT uzzalkumardash lengthscaleanalysesofbackgrounderrorcovariancesforenkfandensrfdataassimilation
AT jinhyeokyu lengthscaleanalysesofbackgrounderrorcovariancesforenkfandensrfdataassimilation