Constitutive Analysis of the Anisotropic Flow Behavior of Commercially Pure Titanium

Plastic anisotropy is an important issue for metals possessing a hexagonal close-packed structure. This study investigated the anisotropic deformation characteristics of commercially pure titanium with basal texture. A quasi-static uniaxial compression gave rise to clear differences in flow curves a...

Full description

Bibliographic Details
Main Authors: Daehwan Kim, Taekyung Lee, Chong Soo Lee
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/22/7962
Description
Summary:Plastic anisotropy is an important issue for metals possessing a hexagonal close-packed structure. This study investigated the anisotropic deformation characteristics of commercially pure titanium with basal texture. A quasi-static uniaxial compression gave rise to clear differences in flow curves and strain-hardening rates depending on the loading direction. This study employed a constitutive approach to quantify the contribution of (i) dynamic Hall–Petch strengthening, (ii) dislocation pile-up, and (iii) texture hardening with respect to the total flow stress. Such an approach calculated a flow stress comparable to the measured value, providing logical validity. The microstructural and mechanical differences depending on the loading direction (i.e., anisotropy) were successfully interpreted based on this approach.
ISSN:2076-3417