Summary: | Abstract Background To analyze the effect of different types of bone cement distribution after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fracture (OVCF). Methods One hundred thirty seven patients with single level OVCF who underwent PVP were retrospectively analyzed. The patients were divided into two groups according to bone cement distribution. Group A: bone cement contacted both upper and lower endplates; Group B: bone cement missed at least one endplate. Group B was divided into 3 subgroups. Group B1: bone cement only contacted the upper endplates; Group B2: bone cement only contacted the lower endplates; Group B3: bone cement only located in the middle of vertebral body. The visual analogue scale (VAS) score at 24 h post operation and last follow-up, anterior vertebral height restoration ratio (AVHRR), anterior vertebral height loss ratio (AVHLR), local kyphotic angle change and vertebral body recompression rate were compared. Results 24 h post operation, the pain of all groups were significantly improved. The average follow-up time was 15.3 ± 6.3 (6–24) months. At last follow-up, the VAS score of group A was lower than that of group B. There were 14 cases (10.2%) of adjacent vertebral fracture, 5 cases (8.6%) in group A and 9 cases (11.4%) in group B. There were 9 cases (6.6%) of cement leakage, 4 cases (6.9%) in group A and 5 cases (6.3%) in group B. At last follow-up, there were 16 cases (11.7%) of vertebral body recompression, including 3 cases (5.2%) in group A and 13 cases (16.5%) in group B. There was no significant difference in AVHRR between two groups. Local kyphotic angle change was significant larger in group B. At last follow-up, AVHLR in group B was higher than that in group A. Analysis in subgroup B revealed no significant difference in VAS score, local kyphotic angle change, vertebral recompression rate, AVHRR or AVHLR. Conclusions If the bone cement fully contacted both the upper and lower endplates, it can better restore the strength of the vertebral body and maintain the height of the vertebral body, reduce the risk of the vertebral body recompression and long-term pain.
|