Directional growth of quasi-2D Cu2O monocrystals on rGO membranes in aqueous environments

Summary: The preparation technology of unconventional low-dimensional Cu2O monocrystals, which exhibit specific crystal planes and present significantly unique interfacial and physicochemical properties, is attracting increasing attention and interest. Herein, by integrating a high-temperature oxida...

Full description

Bibliographic Details
Main Authors: Yimin Zhao, Quan Zhang, Jianbing Ma, Ruobing Yi, Lu Gou, Dexi Nie, Xiaona Han, Lihao Zhang, Yuetian Wang, Xintong Xu, Zhe Wang, Liang Chen, Ying Lu, Shengli Zhang, Lei Zhang
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004222017448
Description
Summary:Summary: The preparation technology of unconventional low-dimensional Cu2O monocrystals, which exhibit specific crystal planes and present significantly unique interfacial and physicochemical properties, is attracting increasing attention and interest. Herein, by integrating a high-temperature oxidation process under vacuum and a pure-water incubation process under ambient conditions, we propose the self-assembled growth and synthesis of quasi-two-dimensional Cu2O monocrystals on reduced graphene oxide (rGO) membranes. The prepared Cu2O crystals have a single (110) crystal plane, regular rectangular morphology, and potentially well conductivity. Experimental and theoretical results suggest that this assembly is attributed to the pre-nucleation clusters aggregation and directional attachment of Cu and O on the rGO membranes in aqueous environment and cation-π interactions between the (110) crystal plane of Cu2O and rGO surface. Our findings offer a potential avenue for the discovery and design of advanced low-dimensional single-crystal materials with specific interfacial properties in a pure aqueous environment.
ISSN:2589-0042