Summary: | Transplantation of human bone marrow mesenchymal stem cells (hMSCs) stands as a potent stroke therapy, but its exact mechanism remains unknown. This study investigated the anti-apoptotic mechanisms by which hMSCs exert neuroprotective effects on cerebral ischemia. Primary mixed cultures of rat neurons and astrocytes were cultured and exposed to oxygen-glucose deprivation. A two-hour period of “reperfusion” in standard medium and normoxic conditions was allowed and immediately followed by hMSCs and/or Bcl-2 antibody treatment. Cell viability of primary rat neurons and astrocytes was determined by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide and trypan blue exclusion methods. hMSC survival and differentiation were characterized by immunocytochemistry, while the concentration of Bcl-2 in the supernatant was measured by enzyme-linked immunosorbent assay to reveal the secretory anti-apoptotic function of hMSCs. Cultured hMSCs expressed embryonic-like stem cell phenotypic markers CXCR4, Oct4, SSEA4, and Nanog, as well as immature neural phenotypic marker Nestin. Primary rat neurons and astrocytes were protected from oxygen-glucose deprivation by hMSCs, which was antagonized by the Bcl-2 antibody. However, Bcl-2 levels in the supernatants did not differ between hMSC- and non-treated cells exposed to oxygen-glucose deprivation. Neuroprotective effects of hMSCs against cerebral ischemia were partially mediated by the anti-apoptotic mechanisms. However, further studies are warranted to fully elucidate this pathway.
|