A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients

PurposeDistant metastasis is the main cause of treatment failure in locally advanced rectal cancer (LARC) patients, despite the recent improvement in treatment strategies. This study aims to evaluate the “delta radiomics” approach in patients undergoing neoadjuvant chemoradiotherapy (nCRT) treated w...

Full description

Bibliographic Details
Main Authors: Giuditta Chiloiro, Luca Boldrini, Francesco Preziosi, Davide Cusumano, Poonam Yadav, Angela Romano, Lorenzo Placidi, Jacopo Lenkowicz, Nicola Dinapoli, Michael F. Bassetti, Maria Antonietta Gambacorta, Vincenzo Valentini
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-02-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2022.831712/full
_version_ 1819279304363606016
author Giuditta Chiloiro
Luca Boldrini
Francesco Preziosi
Davide Cusumano
Poonam Yadav
Angela Romano
Lorenzo Placidi
Jacopo Lenkowicz
Nicola Dinapoli
Michael F. Bassetti
Maria Antonietta Gambacorta
Vincenzo Valentini
author_facet Giuditta Chiloiro
Luca Boldrini
Francesco Preziosi
Davide Cusumano
Poonam Yadav
Angela Romano
Lorenzo Placidi
Jacopo Lenkowicz
Nicola Dinapoli
Michael F. Bassetti
Maria Antonietta Gambacorta
Vincenzo Valentini
author_sort Giuditta Chiloiro
collection DOAJ
description PurposeDistant metastasis is the main cause of treatment failure in locally advanced rectal cancer (LARC) patients, despite the recent improvement in treatment strategies. This study aims to evaluate the “delta radiomics” approach in patients undergoing neoadjuvant chemoradiotherapy (nCRT) treated with 0.35-T magnetic resonance-guided radiotherapy (MRgRT), developing a logistic regression model able to predict 2-year disease-free-survival (2yDFS).MethodsPatients affected by LARC were enrolled in this multi-institutional study. A predictive model of 2yDFS was developed taking into account both clinical and radiomics variables. Gross tumour volume (GTV) was delineated on the magnetic resonance (MR) images acquired during MRgRT, and 1,067 radiomic features (RF) were extracted using the MODDICOM platform. The performance of RF in predicting 2yDFS was investigated in terms of the Wilcoxon–Mann–Whitney test and area under receiver operating characteristic (ROC) curve (AUC).Results48 patients have been retrospectively enrolled, with 8 patients (16.7%) developing distant metastases at the 2-year follow-up. A total of 1,099 variables (1,067 RF and 32 clinical variables) were evaluated in two different models: radiomics and radiomics/clinical. The best-performing 2yDFS predictive model was a delta radiomics one, based on the variation in terms of area/surface ratio between biologically effective doses (BED) at 54 Gy and simulation (AUC of 0.92).ConclusionsThe results of this study suggest a promising role of delta radiomics analysis on 0.35-T MR images in predicting 2yDFS for LARC patients. Further analyses including larger cohorts of patients and an external validation are needed to confirm these preliminary results.
first_indexed 2024-12-24T00:25:46Z
format Article
id doaj.art-1d5a2946d3974ff9bcb91a08597862c6
institution Directory Open Access Journal
issn 2234-943X
language English
last_indexed 2024-12-24T00:25:46Z
publishDate 2022-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj.art-1d5a2946d3974ff9bcb91a08597862c62022-12-21T17:24:26ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2022-02-011210.3389/fonc.2022.831712831712A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer PatientsGiuditta Chiloiro0Luca Boldrini1Francesco Preziosi2Davide Cusumano3Poonam Yadav4Angela Romano5Lorenzo Placidi6Jacopo Lenkowicz7Nicola Dinapoli8Michael F. Bassetti9Maria Antonietta Gambacorta10Vincenzo Valentini11Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, ItalyDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDepartment of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United StatesDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDepartment of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United StatesDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyDipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, ItalyPurposeDistant metastasis is the main cause of treatment failure in locally advanced rectal cancer (LARC) patients, despite the recent improvement in treatment strategies. This study aims to evaluate the “delta radiomics” approach in patients undergoing neoadjuvant chemoradiotherapy (nCRT) treated with 0.35-T magnetic resonance-guided radiotherapy (MRgRT), developing a logistic regression model able to predict 2-year disease-free-survival (2yDFS).MethodsPatients affected by LARC were enrolled in this multi-institutional study. A predictive model of 2yDFS was developed taking into account both clinical and radiomics variables. Gross tumour volume (GTV) was delineated on the magnetic resonance (MR) images acquired during MRgRT, and 1,067 radiomic features (RF) were extracted using the MODDICOM platform. The performance of RF in predicting 2yDFS was investigated in terms of the Wilcoxon–Mann–Whitney test and area under receiver operating characteristic (ROC) curve (AUC).Results48 patients have been retrospectively enrolled, with 8 patients (16.7%) developing distant metastases at the 2-year follow-up. A total of 1,099 variables (1,067 RF and 32 clinical variables) were evaluated in two different models: radiomics and radiomics/clinical. The best-performing 2yDFS predictive model was a delta radiomics one, based on the variation in terms of area/surface ratio between biologically effective doses (BED) at 54 Gy and simulation (AUC of 0.92).ConclusionsThe results of this study suggest a promising role of delta radiomics analysis on 0.35-T MR images in predicting 2yDFS for LARC patients. Further analyses including larger cohorts of patients and an external validation are needed to confirm these preliminary results.https://www.frontiersin.org/articles/10.3389/fonc.2022.831712/fulldelta radiomicspredictive modelrectal cancerMRgRTneoadjuvant chemoradiotherapy
spellingShingle Giuditta Chiloiro
Luca Boldrini
Francesco Preziosi
Davide Cusumano
Poonam Yadav
Angela Romano
Lorenzo Placidi
Jacopo Lenkowicz
Nicola Dinapoli
Michael F. Bassetti
Maria Antonietta Gambacorta
Vincenzo Valentini
A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients
Frontiers in Oncology
delta radiomics
predictive model
rectal cancer
MRgRT
neoadjuvant chemoradiotherapy
title A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients
title_full A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients
title_fullStr A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients
title_full_unstemmed A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients
title_short A Predictive Model of 2yDFS During MR-Guided RT Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients
title_sort predictive model of 2ydfs during mr guided rt neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients
topic delta radiomics
predictive model
rectal cancer
MRgRT
neoadjuvant chemoradiotherapy
url https://www.frontiersin.org/articles/10.3389/fonc.2022.831712/full
work_keys_str_mv AT giudittachiloiro apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT lucaboldrini apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT francescopreziosi apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT davidecusumano apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT poonamyadav apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT angelaromano apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT lorenzoplacidi apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT jacopolenkowicz apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT nicoladinapoli apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT michaelfbassetti apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT mariaantoniettagambacorta apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT vincenzovalentini apredictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT giudittachiloiro predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT lucaboldrini predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT francescopreziosi predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT davidecusumano predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT poonamyadav predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT angelaromano predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT lorenzoplacidi predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT jacopolenkowicz predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT nicoladinapoli predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT michaelfbassetti predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT mariaantoniettagambacorta predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients
AT vincenzovalentini predictivemodelof2ydfsduringmrguidedrtneoadjuvantchemoradiotherapyinlocallyadvancedrectalcancerpatients