Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter

Global convection mapping using line-of-sight Doppler velocity data from the Super Dual Auroral Radar Network (SuperDARN) is now an accepted method of imaging high-latitude ionospheric convection. This mapping process requires that the flow measured by the radars is defined solely by the con...

Full description

Bibliographic Details
Main Authors: G. Chisham, M. Pinnock
Format: Article
Language:English
Published: Copernicus Publications 2002-01-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/20/13/2002/angeo-20-13-2002.pdf
Description
Summary:Global convection mapping using line-of-sight Doppler velocity data from the Super Dual Auroral Radar Network (SuperDARN) is now an accepted method of imaging high-latitude ionospheric convection. This mapping process requires that the flow measured by the radars is defined solely by the convection electric field. This is generally only true of radar backscatter from the ionospheric F-region. We investigate the extent to which the E-region and ground backscatter in the SuperDARN data set may be misidentified as F-region backscatter, and assess the contamination of global convection maps which results from the addition of this non-F-region backscatter. We present examples which highlight the importance of identifying this contamination, especially with regard to the mesoscale structure in the convection maps.<br><br><b>Key words. </b>Ionosphere (plasma convection) – Radio science (radio wave propagation; instruments and techniques)
ISSN:0992-7689
1432-0576