Structural Analysis of Loosely Coupled Transformers with FEA-Aided Visualization for Wireless Power Transfer Systems against Misalignment Tolerance

The main problems of automotive wireless power transmission (WPT) systems include a weak misalignment tolerance are urgently required to be solved through the design of the loosely coupled transformer. In this paper, an analysis methodology based on finite element analysis (FEA) visualization is pro...

Full description

Bibliographic Details
Main Authors: Yao Zhang, Jiayang Li, Fan Zhang, Zhangping Chen, Yaguang Kong, Na Huang
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/8/1218
Description
Summary:The main problems of automotive wireless power transmission (WPT) systems include a weak misalignment tolerance are urgently required to be solved through the design of the loosely coupled transformer. In this paper, an analysis methodology based on finite element analysis (FEA) visualization is proposed, it is easy-implemented and straightforwardly explains this complex electromagnetic phenomenon. Firstly, the transformer structures with different winding and magnetic core arrangement were modeled by FEA in both 3-D and 2-D visualizations. The distribution of space coupling magnetic fields and leakage fields was analyzed by <i>ANSYS Electronics</i>. The key parameters that have a great influence on the coupling performance were delicately chosen. Then, the quantitative analysis of these key parameters and coupling performance against misalignment tolerance is presented. The numerical statistical result shows that the maximum coupling coefficient of the three structures that have been optimized consistently appears when the two key parameters, the inner and outer diameter, account for about 20% and 60% of the whole dimension of the transformers. A new transformer with a solenoid-shaped structure and strong misalignment tolerance was proposed based on the analysis methodology and the FEA results of the three structures. The delivered power and transfer efficiency under different misalignments of the new structure were analyzed via an FEA-aided joint method as well. The relationships among misalignment tolerance, key structural dimensions and coupling coefficients for all these structures were comprehensively investigated, which provide guidance for the subsequent multi-objective optimization strategies.
ISSN:2079-9292