Rational Application of Electric Power Production Optimization through Metaheuristics Algorithm

The aim of this manuscript is to introduce solutions to optimize economic dispatch of loads and combined emissions (CEED) in thermal generators. We use metaheuristics, such as particle swarm optimization (PSO), ant lion optimization (ALO), dragonfly algorithm (DA), and differential evolution (DE), w...

Full description

Bibliographic Details
Main Authors: Eliton Smith dos Santos, Marcus Vinícius Alves Nunes, Manoel Henrique Reis Nascimento, Jandecy Cabral Leite
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/9/3253
Description
Summary:The aim of this manuscript is to introduce solutions to optimize economic dispatch of loads and combined emissions (CEED) in thermal generators. We use metaheuristics, such as particle swarm optimization (PSO), ant lion optimization (ALO), dragonfly algorithm (DA), and differential evolution (DE), which are normally used for comparative simulations, and evaluation of CEED optimization, generated in MATLAB. For this study, we used a hybrid model composed of six (06) thermal units and thirteen (13) photovoltaic solar plants (PSP), considering emissions of contaminants into the air and the reduction in the total cost of combustibles. The implementation of a new method that identifies and turns off the least efficient thermal generators allows metaheuristic techniques to determine the value of the optimal power of the other generators, thereby reducing the level of pollutants in the atmosphere. The results are presented in comparative charts of the methods, where the power, emissions, and costs of the thermal plants are analyzed. Finally, the comparative results of the methods were analyzed to characterize the efficiency of the proposed algorithm.
ISSN:1996-1073