Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia
In this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through th...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-10-01
|
Series: | Minerals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-163X/11/11/1174 |
_version_ | 1797509211704262656 |
---|---|
author | Anicia Henne Nathan Reid Robert L. Thorne Samuel C. Spinks Tenten Pinchand Alistair White |
author_facet | Anicia Henne Nathan Reid Robert L. Thorne Samuel C. Spinks Tenten Pinchand Alistair White |
author_sort | Anicia Henne |
collection | DOAJ |
description | In this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through the critical zone at the fault-hosted Prairie and Wolf Zn–Pb (Ag) deposits in Western Australia. We used multi-element geochemistry analyses to spatially identify geochemical anomalies in samples over known mineralization, and investigated metal dispersion processes. In all near-surface sample media, high concentrations of the metals of interest (Zn, Pb, Ag) coincided with samples proximal to the mineralization at depth. However, the lateral dispersion of these elements differed from regional (several km; groundwater) to local (several 100′s of meters; solid sample media) scales. Zinc in spinifex leaves over the Prairie and Wolf deposits exceeded the total concentrations in all other sample media, while the metal concentrations in mulga phyllodes were not as pronounced, except for Ag, which exceeded the concentrations in all other sample media. These observations indicate potential preferential metal-specific uptake by different media. Pathfinder elements in vegetation and groundwater samples also indicated the Prairie Downs fault zone at the regional (groundwater) and local (vegetation) scale, and are, therefore, potentially useful tools to trace fault systems that host structurally controlled, hydrothermal Zn–Pb mineralization. |
first_indexed | 2024-03-10T05:14:29Z |
format | Article |
id | doaj.art-1d78bb5bb3b54ace94927eb386560fdb |
institution | Directory Open Access Journal |
issn | 2075-163X |
language | English |
last_indexed | 2024-03-10T05:14:29Z |
publishDate | 2021-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Minerals |
spelling | doaj.art-1d78bb5bb3b54ace94927eb386560fdb2023-11-23T00:31:23ZengMDPI AGMinerals2075-163X2021-10-011111117410.3390/min11111174Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western AustraliaAnicia Henne0Nathan Reid1Robert L. Thorne2Samuel C. Spinks3Tenten Pinchand4Alistair White5CSIRO Mineral Resources, ARRC Building, Kensington 6151, AustraliaCSIRO Mineral Resources, ARRC Building, Kensington 6151, AustraliaCSIRO Mineral Resources, ARRC Building, Kensington 6151, AustraliaCSIRO Mineral Resources, ARRC Building, Kensington 6151, AustraliaCSIRO Mineral Resources, ARRC Building, Kensington 6151, AustraliaCSIRO Mineral Resources, ARRC Building, Kensington 6151, AustraliaIn this study, we compared traditional lithochemical sample media (soil) with hydrochemical (groundwater), biogeochemical (plant matter of mulga and spinifex), and other near-surface sample media (ferro-manganese crust), in a case study applied to mineral exploration in weathered terrain, through the critical zone at the fault-hosted Prairie and Wolf Zn–Pb (Ag) deposits in Western Australia. We used multi-element geochemistry analyses to spatially identify geochemical anomalies in samples over known mineralization, and investigated metal dispersion processes. In all near-surface sample media, high concentrations of the metals of interest (Zn, Pb, Ag) coincided with samples proximal to the mineralization at depth. However, the lateral dispersion of these elements differed from regional (several km; groundwater) to local (several 100′s of meters; solid sample media) scales. Zinc in spinifex leaves over the Prairie and Wolf deposits exceeded the total concentrations in all other sample media, while the metal concentrations in mulga phyllodes were not as pronounced, except for Ag, which exceeded the concentrations in all other sample media. These observations indicate potential preferential metal-specific uptake by different media. Pathfinder elements in vegetation and groundwater samples also indicated the Prairie Downs fault zone at the regional (groundwater) and local (vegetation) scale, and are, therefore, potentially useful tools to trace fault systems that host structurally controlled, hydrothermal Zn–Pb mineralization.https://www.mdpi.com/2075-163X/11/11/1174biogeochemistryhydrochemistryspinifexmulgagroundwatermineral exploration |
spellingShingle | Anicia Henne Nathan Reid Robert L. Thorne Samuel C. Spinks Tenten Pinchand Alistair White Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia Minerals biogeochemistry hydrochemistry spinifex mulga groundwater mineral exploration |
title | Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia |
title_full | Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia |
title_fullStr | Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia |
title_full_unstemmed | Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia |
title_short | Multi-Media Geochemical Exploration in the Critical Zone: A Case Study over the Prairie and Wolf Zn–Pb Deposits, Capricorn Orogen, Western Australia |
title_sort | multi media geochemical exploration in the critical zone a case study over the prairie and wolf zn pb deposits capricorn orogen western australia |
topic | biogeochemistry hydrochemistry spinifex mulga groundwater mineral exploration |
url | https://www.mdpi.com/2075-163X/11/11/1174 |
work_keys_str_mv | AT aniciahenne multimediageochemicalexplorationinthecriticalzoneacasestudyovertheprairieandwolfznpbdepositscapricornorogenwesternaustralia AT nathanreid multimediageochemicalexplorationinthecriticalzoneacasestudyovertheprairieandwolfznpbdepositscapricornorogenwesternaustralia AT robertlthorne multimediageochemicalexplorationinthecriticalzoneacasestudyovertheprairieandwolfznpbdepositscapricornorogenwesternaustralia AT samuelcspinks multimediageochemicalexplorationinthecriticalzoneacasestudyovertheprairieandwolfznpbdepositscapricornorogenwesternaustralia AT tentenpinchand multimediageochemicalexplorationinthecriticalzoneacasestudyovertheprairieandwolfznpbdepositscapricornorogenwesternaustralia AT alistairwhite multimediageochemicalexplorationinthecriticalzoneacasestudyovertheprairieandwolfznpbdepositscapricornorogenwesternaustralia |