A generalized Fucik type eigenvalue problem for p-Laplacian

In this paper we study the generalized Fucik type eigenvalue for the boundary value problem of one dimensional $p-$Laplace type differential equations \[ \left\{\begin{array}{lll} - (\varphi( u')) ' = \psi(u), \quad -T< x < T; \\ \quad u(-T)=0, \quad u(T)=0 \\ \end{array} \right.\ta...

Full description

Bibliographic Details
Main Author: Yuanji Cheng
Format: Article
Language:English
Published: University of Szeged 2009-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=372
_version_ 1797830692997955584
author Yuanji Cheng
author_facet Yuanji Cheng
author_sort Yuanji Cheng
collection DOAJ
description In this paper we study the generalized Fucik type eigenvalue for the boundary value problem of one dimensional $p-$Laplace type differential equations \[ \left\{\begin{array}{lll} - (\varphi( u')) ' = \psi(u), \quad -T< x < T; \\ \quad u(-T)=0, \quad u(T)=0 \\ \end{array} \right.\tag{*} \] where $\varphi (s) = \alpha s_+^{p-1} -\beta s_-^{p-1}, \psi (s) = \lambda s_+^{p-1} -\mu s_-^{p-1}, p >1.$ We obtain a explicit characterization of Fucik spectrum $(\alpha, \beta, \lambda, \mu),$ i.e., for which the (*) has a nontrivial solution.
first_indexed 2024-04-09T13:41:16Z
format Article
id doaj.art-1d7909a537574552b32b2cbeb6b905a6
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:16Z
publishDate 2009-03-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-1d7909a537574552b32b2cbeb6b905a62023-05-09T07:52:59ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752009-03-012009181910.14232/ejqtde.2009.1.18372A generalized Fucik type eigenvalue problem for p-LaplacianYuanji Cheng0Malmö University, Malmö, SwedenIn this paper we study the generalized Fucik type eigenvalue for the boundary value problem of one dimensional $p-$Laplace type differential equations \[ \left\{\begin{array}{lll} - (\varphi( u')) ' = \psi(u), \quad -T< x < T; \\ \quad u(-T)=0, \quad u(T)=0 \\ \end{array} \right.\tag{*} \] where $\varphi (s) = \alpha s_+^{p-1} -\beta s_-^{p-1}, \psi (s) = \lambda s_+^{p-1} -\mu s_-^{p-1}, p >1.$ We obtain a explicit characterization of Fucik spectrum $(\alpha, \beta, \lambda, \mu),$ i.e., for which the (*) has a nontrivial solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=372
spellingShingle Yuanji Cheng
A generalized Fucik type eigenvalue problem for p-Laplacian
Electronic Journal of Qualitative Theory of Differential Equations
title A generalized Fucik type eigenvalue problem for p-Laplacian
title_full A generalized Fucik type eigenvalue problem for p-Laplacian
title_fullStr A generalized Fucik type eigenvalue problem for p-Laplacian
title_full_unstemmed A generalized Fucik type eigenvalue problem for p-Laplacian
title_short A generalized Fucik type eigenvalue problem for p-Laplacian
title_sort generalized fucik type eigenvalue problem for p laplacian
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=372
work_keys_str_mv AT yuanjicheng ageneralizedfuciktypeeigenvalueproblemforplaplacian
AT yuanjicheng generalizedfuciktypeeigenvalueproblemforplaplacian