Exploring Parameter Space in Reinforcement Learning

This paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions. Parameter-based exploration unifies reinforcement learning and black-box opt...

Full description

Bibliographic Details
Main Authors: Rückstieß Thomas, Sehnke Frank, Schaul Tom, Wierstra Daan, Sun Yi, Schmidhuber Jürgen
Format: Article
Language:English
Published: De Gruyter 2010-03-01
Series:Paladyn
Subjects:
Online Access:https://doi.org/10.2478/s13230-010-0002-4
_version_ 1797668818136334336
author Rückstieß Thomas
Sehnke Frank
Schaul Tom
Wierstra Daan
Sun Yi
Schmidhuber Jürgen
author_facet Rückstieß Thomas
Sehnke Frank
Schaul Tom
Wierstra Daan
Sun Yi
Schmidhuber Jürgen
author_sort Rückstieß Thomas
collection DOAJ
description This paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions. Parameter-based exploration unifies reinforcement learning and black-box optimization, and has several advantages over action perturbation. We review two recent parameter-exploring algorithms: Natural Evolution Strategies and Policy Gradients with Parameter-Based Exploration. Both outperform state-of-the-art algorithms in several complex high-dimensional tasks commonly found in robot control. Furthermore, we describe how a novel exploration method, State-Dependent Exploration, can modify existing algorithms to mimic exploration in parameter space.
first_indexed 2024-03-11T20:35:00Z
format Article
id doaj.art-1d7d7f4ee4c14115b57878db43f50fab
institution Directory Open Access Journal
issn 2081-4836
language English
last_indexed 2024-03-11T20:35:00Z
publishDate 2010-03-01
publisher De Gruyter
record_format Article
series Paladyn
spelling doaj.art-1d7d7f4ee4c14115b57878db43f50fab2023-10-02T07:10:43ZengDe GruyterPaladyn2081-48362010-03-0111142410.2478/s13230-010-0002-4Exploring Parameter Space in Reinforcement LearningRückstieß Thomas0Sehnke Frank1Schaul Tom2Wierstra Daan3Sun Yi4Schmidhuber Jürgen5 Technische Universität München, Institut für Informatik VI, Boltzmannstr. 3, 85748 Garching, Germany Technische Universität München, Institut für Informatik VI, Boltzmannstr. 3, 85748 Garching, Germany Dalle Molle Institute for Artificial Intelligence (IDSIA), Galleria 2, 6928 Manno-Lugano, Switzerland Dalle Molle Institute for Artificial Intelligence (IDSIA), Galleria 2, 6928 Manno-Lugano, Switzerland Dalle Molle Institute for Artificial Intelligence (IDSIA), Galleria 2, 6928 Manno-Lugano, Switzerland Dalle Molle Institute for Artificial Intelligence (IDSIA), Galleria 2, 6928 Manno-Lugano, SwitzerlandThis paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions. Parameter-based exploration unifies reinforcement learning and black-box optimization, and has several advantages over action perturbation. We review two recent parameter-exploring algorithms: Natural Evolution Strategies and Policy Gradients with Parameter-Based Exploration. Both outperform state-of-the-art algorithms in several complex high-dimensional tasks commonly found in robot control. Furthermore, we describe how a novel exploration method, State-Dependent Exploration, can modify existing algorithms to mimic exploration in parameter space.https://doi.org/10.2478/s13230-010-0002-4reinforcement learningoptimizationexplorationpolicy gradients
spellingShingle Rückstieß Thomas
Sehnke Frank
Schaul Tom
Wierstra Daan
Sun Yi
Schmidhuber Jürgen
Exploring Parameter Space in Reinforcement Learning
Paladyn
reinforcement learning
optimization
exploration
policy gradients
title Exploring Parameter Space in Reinforcement Learning
title_full Exploring Parameter Space in Reinforcement Learning
title_fullStr Exploring Parameter Space in Reinforcement Learning
title_full_unstemmed Exploring Parameter Space in Reinforcement Learning
title_short Exploring Parameter Space in Reinforcement Learning
title_sort exploring parameter space in reinforcement learning
topic reinforcement learning
optimization
exploration
policy gradients
url https://doi.org/10.2478/s13230-010-0002-4
work_keys_str_mv AT ruckstießthomas exploringparameterspaceinreinforcementlearning
AT sehnkefrank exploringparameterspaceinreinforcementlearning
AT schaultom exploringparameterspaceinreinforcementlearning
AT wierstradaan exploringparameterspaceinreinforcementlearning
AT sunyi exploringparameterspaceinreinforcementlearning
AT schmidhuberjurgen exploringparameterspaceinreinforcementlearning