Spray Characteristics of Bioethanol-Blended Fuel under Various Temperature Conditions Using Laser Mie Scattering and Optical Illumination

Bioethanol has great potential to reduce emissions from transportation while improving energy security and developing the economy. Bioethanol has a higher octane-number and a higher enthalpy of vaporisation than gasoline (resulting in charge cooling)—properties that have been used to extend knocking...

Full description

Bibliographic Details
Main Author: Seong-Ho Jin
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Fuels
Subjects:
Online Access:https://www.mdpi.com/2673-3994/3/2/13
Description
Summary:Bioethanol has great potential to reduce emissions from transportation while improving energy security and developing the economy. Bioethanol has a higher octane-number and a higher enthalpy of vaporisation than gasoline (resulting in charge cooling)—properties that have been used to extend knocking limits. Therefore, bioethanol can be used to substitute gasoline in automotive engine applications. The characteristics of bioethanol spray, such as hydrous bioethanol fuel which consists of 93% bioethanol and 7% water, were investigated under various temperature conditions from sub-zero (−15 °C) to room temperature (17 °C) by means of high-speed direct photography and laser Mie scattering techniques without any seeding materials. The experimental results show that the spray patterns are not significantly changed. In the case of the sub-zero temperature condition, the spray tip penetration decreases while the spray angle keeps almost constant once the spray becomes fully developed. The results show that scaling of the spray tip penetration rate achieves a reasonable collapse of the experimental results. The normalised droplet diameter was also obtained and shows that larger droplets are formed at the sub-zero temperature condition.
ISSN:2673-3994