High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN

Spectrometer miniaturization is desired for handheld and portable applications, yet nearly no miniaturized spectrometer is reported operating within terahertz (THz) waveband. Computational strategy, which can acquire incident spectral information through encoding and decoding it using optical device...

Full description

Bibliographic Details
Main Authors: Liu Mengjuan, Yang Meichen, Zhu Jiaqi, Zhu He, Wang Yao, Ren Ziyang, Zhai Yihui, Zhu Haiming, Shan Yufeng, Qi Hongxing, Duan Junli, Wu Huizhen, Dai Ning
Format: Article
Language:English
Published: De Gruyter 2023-11-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2023-0581
_version_ 1827620660322500608
author Liu Mengjuan
Yang Meichen
Zhu Jiaqi
Zhu He
Wang Yao
Ren Ziyang
Zhai Yihui
Zhu Haiming
Shan Yufeng
Qi Hongxing
Duan Junli
Wu Huizhen
Dai Ning
author_facet Liu Mengjuan
Yang Meichen
Zhu Jiaqi
Zhu He
Wang Yao
Ren Ziyang
Zhai Yihui
Zhu Haiming
Shan Yufeng
Qi Hongxing
Duan Junli
Wu Huizhen
Dai Ning
author_sort Liu Mengjuan
collection DOAJ
description Spectrometer miniaturization is desired for handheld and portable applications, yet nearly no miniaturized spectrometer is reported operating within terahertz (THz) waveband. Computational strategy, which can acquire incident spectral information through encoding and decoding it using optical devices and reconstruction algorithms, respectively, is widely employed in spectrometer miniaturization as artificial intelligence emerges. We demonstrate a computational miniaturized THz spectrometer, where a plasmonic filter array tailors the spectral response of a blocked-impurity-band detector. Besides, an adaptive deep-learning algorithm is proposed for spectral reconstructions with curbing the negative impact from the optical property of the filter array. Our spectrometer achieves modest spectral resolution (2.3 cm−1) compared with visible and infrared miniaturized spectrometers, outstanding sensitivity (e.g., signal-to-noise ratio, 6.4E6: 1) superior to common benchtop THz spectrometers. The combination of THz optical devices and reconstruction algorithms provides a route toward THz spectrometer miniaturization, and further extends the applicable sphere of the THz spectroscopy technique.
first_indexed 2024-03-09T10:51:09Z
format Article
id doaj.art-1d92494267c94602957f60b9b410707e
institution Directory Open Access Journal
issn 2192-8614
language English
last_indexed 2024-03-09T10:51:09Z
publishDate 2023-11-01
publisher De Gruyter
record_format Article
series Nanophotonics
spelling doaj.art-1d92494267c94602957f60b9b410707e2023-12-01T07:18:54ZengDe GruyterNanophotonics2192-86142023-11-0112234375438510.1515/nanoph-2023-0581High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNNLiu Mengjuan0Yang Meichen1Zhu Jiaqi2Zhu He3Wang Yao4Ren Ziyang5Zhai Yihui6Zhu Haiming7Shan Yufeng8Qi Hongxing9Duan Junli10Wu Huizhen11Dai Ning12Zhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaHangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, ChinaZhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaHangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, ChinaZhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaZhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaZhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaZhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaHangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, ChinaHangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, ChinaHangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, ChinaZhejiang Province Key Laboratory of Quantum Technology and Devices, School of Physics, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou310058, ChinaHangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, ChinaSpectrometer miniaturization is desired for handheld and portable applications, yet nearly no miniaturized spectrometer is reported operating within terahertz (THz) waveband. Computational strategy, which can acquire incident spectral information through encoding and decoding it using optical devices and reconstruction algorithms, respectively, is widely employed in spectrometer miniaturization as artificial intelligence emerges. We demonstrate a computational miniaturized THz spectrometer, where a plasmonic filter array tailors the spectral response of a blocked-impurity-band detector. Besides, an adaptive deep-learning algorithm is proposed for spectral reconstructions with curbing the negative impact from the optical property of the filter array. Our spectrometer achieves modest spectral resolution (2.3 cm−1) compared with visible and infrared miniaturized spectrometers, outstanding sensitivity (e.g., signal-to-noise ratio, 6.4E6: 1) superior to common benchtop THz spectrometers. The combination of THz optical devices and reconstruction algorithms provides a route toward THz spectrometer miniaturization, and further extends the applicable sphere of the THz spectroscopy technique.https://doi.org/10.1515/nanoph-2023-0581computational miniaturized terahertz spectrometerplasmonic filtersadaptive deep-learning algorithm
spellingShingle Liu Mengjuan
Yang Meichen
Zhu Jiaqi
Zhu He
Wang Yao
Ren Ziyang
Zhai Yihui
Zhu Haiming
Shan Yufeng
Qi Hongxing
Duan Junli
Wu Huizhen
Dai Ning
High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
Nanophotonics
computational miniaturized terahertz spectrometer
plasmonic filters
adaptive deep-learning algorithm
title High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
title_full High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
title_fullStr High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
title_full_unstemmed High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
title_short High-sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual CNN
title_sort high sensitivity computational miniaturized terahertz spectrometer using a plasmonic filter array and a modified multilayer residual cnn
topic computational miniaturized terahertz spectrometer
plasmonic filters
adaptive deep-learning algorithm
url https://doi.org/10.1515/nanoph-2023-0581
work_keys_str_mv AT liumengjuan highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT yangmeichen highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT zhujiaqi highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT zhuhe highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT wangyao highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT renziyang highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT zhaiyihui highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT zhuhaiming highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT shanyufeng highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT qihongxing highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT duanjunli highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT wuhuizhen highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn
AT daining highsensitivitycomputationalminiaturizedterahertzspectrometerusingaplasmonicfilterarrayandamodifiedmultilayerresidualcnn