Effect of hydrogen-gas pressure on threshold of hydrogen-induced crack growth for carbon steel JIS-SM490B, low-alloy steel JIS-SCM435 and stainless steel JIS-SUS304

In order to clarify the effect of hydrogen-gas pressure on threshold of hydrogen-induced crack growth (KI,H), elasto-plastic fracture toughness tests were performed on JIS-SM490B carbon steel, JIS-SCM435 low-alloy steel and JIS-SUS304 stainless steel. For JIS-SM490B and JIS-SUS304, the values of KI,...

Full description

Bibliographic Details
Main Authors: Saburo MATSUOKA, Satoko YOSHIDA, Takashi IIJIMA, Shigeru HAMADA, Hisao MATSUNAGA, Junichiro YAMABE
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2019-03-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/85/872/85_18-00415/_pdf/-char/en
Description
Summary:In order to clarify the effect of hydrogen-gas pressure on threshold of hydrogen-induced crack growth (KI,H), elasto-plastic fracture toughness tests were performed on JIS-SM490B carbon steel, JIS-SCM435 low-alloy steel and JIS-SUS304 stainless steel. For JIS-SM490B and JIS-SUS304, the values of KI,H at displacement rates of 2×10–5 and 2×10–4 mm/s were almost the same in hydrogen at pressures of pH2= 20, 45 and 115 MPa (KI,H ≒ 80 MPa·m1/2 for JIS-SM490B and 150 MPa·m1/2 for JIS-SUS304). In contrast, for JIS-SCM435, the values of KI,H at displacement rates of 2×10–5 and 2×10–4 mm/s were the same in hydrogen gas at pressures of pH2 = 20, 45 and 80 MPa (KI,H ≒ 100 MPa·m1/2); however, those of KI,H were degraded in 115-MPa hydrogen gas (KI,H ≒ 50 MPa·m1/2). Based on the HISCG (Hydrogen Induced Successive Crack Growth) model, an effect of pH2 on KI,H and an existence of KI,H were also discussed for JIS-SM490B, JIS-SCM435 and JIS-SUS304.
ISSN:2187-9761