HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION

In this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP) algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the...

Full description

Bibliographic Details
Main Authors: H. Zhang, H. Zhai, W. Liao, L. Cao, L. Zhang, A. Pižurica
Format: Article
Language:English
Published: Copernicus Publications 2016-06-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B3/945/2016/isprs-archives-XLI-B3-945-2016.pdf
_version_ 1818701181226057728
author H. Zhang
H. Zhang
H. Zhai
W. Liao
L. Cao
L. Zhang
A. Pižurica
author_facet H. Zhang
H. Zhang
H. Zhai
W. Liao
L. Cao
L. Zhang
A. Pižurica
author_sort H. Zhang
collection DOAJ
description In this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP) algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the sparse subspace clustering (SSC) model is extended to nonlinear manifolds, which can better explore the complex nonlinear structure of hyperspectral images (HSIs) and obtain a much more accurate representation coefficient matrix. Secondly, through the spatial max pooling operation, the spatial contextual information is integrated to obtain a smoother clustering result. Through experiments, it is verified that the KSSC-SMP algorithm is a competitive clustering method for HSIs and outperforms the state-of-the-art clustering methods.
first_indexed 2024-12-17T15:16:45Z
format Article
id doaj.art-1d99df22fb804b95963ed93d13f55b4c
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-12-17T15:16:45Z
publishDate 2016-06-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-1d99df22fb804b95963ed93d13f55b4c2022-12-21T21:43:30ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342016-06-01XLI-B394594810.5194/isprs-archives-XLI-B3-945-2016HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATIONH. Zhang0H. Zhang1H. Zhai2W. Liao3L. Cao4L. Zhang5A. Pižurica6Ghent University, Dept. Telecommunications and Information Processing, TELIN-IPI-iMinds, Ghent, BelgiumThe State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, ChinaThe State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, ChinaGhent University, Dept. Telecommunications and Information Processing, TELIN-IPI-iMinds, Ghent, BelgiumSchool of Printing and Packaging, Wuhan University, ChinaThe State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, ChinaGhent University, Dept. Telecommunications and Information Processing, TELIN-IPI-iMinds, Ghent, BelgiumIn this paper, we present a kernel sparse subspace clustering with spatial max pooling operation (KSSC-SMP) algorithm for hyperspectral remote sensing imagery. Firstly, the feature points are mapped from the original space into a higher dimensional space with a kernel strategy. In particular, the sparse subspace clustering (SSC) model is extended to nonlinear manifolds, which can better explore the complex nonlinear structure of hyperspectral images (HSIs) and obtain a much more accurate representation coefficient matrix. Secondly, through the spatial max pooling operation, the spatial contextual information is integrated to obtain a smoother clustering result. Through experiments, it is verified that the KSSC-SMP algorithm is a competitive clustering method for HSIs and outperforms the state-of-the-art clustering methods.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B3/945/2016/isprs-archives-XLI-B3-945-2016.pdf
spellingShingle H. Zhang
H. Zhang
H. Zhai
W. Liao
L. Cao
L. Zhang
A. Pižurica
HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
title_full HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
title_fullStr HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
title_full_unstemmed HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
title_short HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
title_sort hyperspectral image kernel sparse subspace clustering with spatial max pooling operation
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B3/945/2016/isprs-archives-XLI-B3-945-2016.pdf
work_keys_str_mv AT hzhang hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation
AT hzhang hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation
AT hzhai hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation
AT wliao hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation
AT lcao hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation
AT lzhang hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation
AT apizurica hyperspectralimagekernelsparsesubspaceclusteringwithspatialmaxpoolingoperation