A relation on 132-avoiding permutation patterns

A permutation $&sigma;$ contains the permutation $&tau;$ if there is a subsequence of $&sigma;$ order isomorphic to $&tau;$. A permutation $&sigma;$ is $&tau;$-<i>avoiding</i> if it does not contain the permutation $&tau;$. For any $n$, the <i>popularity...

Full description

Bibliographic Details
Main Author: Natalie Aisbett
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2015-12-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2141/pdf
_version_ 1827323791761473536
author Natalie Aisbett
author_facet Natalie Aisbett
author_sort Natalie Aisbett
collection DOAJ
description A permutation $&sigma;$ contains the permutation $&tau;$ if there is a subsequence of $&sigma;$ order isomorphic to $&tau;$. A permutation $&sigma;$ is $&tau;$-<i>avoiding</i> if it does not contain the permutation $&tau;$. For any $n$, the <i>popularity</i> of a permutation $&tau;$, denoted $A$<sub>$n$</sub>($&tau;$), is the number of copies of $&tau;$ contained in the set of all 132-avoiding permutations of length $n$. Rudolph conjectures that for permutations $&tau;$ and $&mu;$ of the same length, $A$<sub>$n$</sub>($&tau;$) ≤ $A$<sub>$n$</sub>($&mu;$) for all $n$ if and only if the spine structure of $&tau;$ is less than or equal to the spine structure of $&mu;$ in refinement order. We prove one direction of this conjecture, by showing that if the spine structure of $&tau;$ is less than or equal to the spine structure of $&mu;$, then $A$<sub>$n$</sub>($&tau;$) ≤ $A$<sub>$n$</sub>($&mu;$) for all $n$. We disprove the opposite direction by giving a counterexample, and hence disprove the conjecture.
first_indexed 2024-04-25T01:58:13Z
format Article
id doaj.art-1dc1b67b410f4622bc2127e08ac0b8d2
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T01:58:13Z
publishDate 2015-12-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-1dc1b67b410f4622bc2127e08ac0b8d22024-03-07T15:28:21ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502015-12-01Vol. 17 no.2Combinatorics10.46298/dmtcs.21412141A relation on 132-avoiding permutation patternsNatalie Aisbett0School of Mathematics and statistics [Sydney]A permutation $&sigma;$ contains the permutation $&tau;$ if there is a subsequence of $&sigma;$ order isomorphic to $&tau;$. A permutation $&sigma;$ is $&tau;$-<i>avoiding</i> if it does not contain the permutation $&tau;$. For any $n$, the <i>popularity</i> of a permutation $&tau;$, denoted $A$<sub>$n$</sub>($&tau;$), is the number of copies of $&tau;$ contained in the set of all 132-avoiding permutations of length $n$. Rudolph conjectures that for permutations $&tau;$ and $&mu;$ of the same length, $A$<sub>$n$</sub>($&tau;$) ≤ $A$<sub>$n$</sub>($&mu;$) for all $n$ if and only if the spine structure of $&tau;$ is less than or equal to the spine structure of $&mu;$ in refinement order. We prove one direction of this conjecture, by showing that if the spine structure of $&tau;$ is less than or equal to the spine structure of $&mu;$, then $A$<sub>$n$</sub>($&tau;$) ≤ $A$<sub>$n$</sub>($&mu;$) for all $n$. We disprove the opposite direction by giving a counterexample, and hence disprove the conjecture.https://dmtcs.episciences.org/2141/pdfpermutationspermutation patternpopularity[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
spellingShingle Natalie Aisbett
A relation on 132-avoiding permutation patterns
Discrete Mathematics & Theoretical Computer Science
permutations
permutation pattern
popularity
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
title A relation on 132-avoiding permutation patterns
title_full A relation on 132-avoiding permutation patterns
title_fullStr A relation on 132-avoiding permutation patterns
title_full_unstemmed A relation on 132-avoiding permutation patterns
title_short A relation on 132-avoiding permutation patterns
title_sort relation on 132 avoiding permutation patterns
topic permutations
permutation pattern
popularity
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
url https://dmtcs.episciences.org/2141/pdf
work_keys_str_mv AT natalieaisbett arelationon132avoidingpermutationpatterns
AT natalieaisbett relationon132avoidingpermutationpatterns