Effect of Cavity in Sandy Soil on Load Distribution of Pile Group

The present study investigates the influence of presence of cavities on adjacent buildings especially in the case of piled structures. The presence of cavity affects on the bearing capacity and settlement of piled foundation. This paper presents an experimental study to investigate the behavior of m...

Full description

Bibliographic Details
Main Authors: Mohammed Y. Fattah, Karim H. Ibrahim. Al-Helo, Hala H. Abed
Format: Article
Language:English
Published: Unviversity of Technology- Iraq 2014-08-01
Series:Engineering and Technology Journal
Subjects:
Online Access:https://etj.uotechnology.edu.iq/article_99908_a7954e92f682ebc2b002bdf68d2a01e4.pdf
_version_ 1797325629652205568
author Mohammed Y. Fattah
Karim H. Ibrahim. Al-Helo
Hala H. Abed
author_facet Mohammed Y. Fattah
Karim H. Ibrahim. Al-Helo
Hala H. Abed
author_sort Mohammed Y. Fattah
collection DOAJ
description The present study investigates the influence of presence of cavities on adjacent buildings especially in the case of piled structures. The presence of cavity affects on the bearing capacity and settlement of piled foundation. This paper presents an experimental study to investigate the behavior of model piles embedded in sandy soil of dry unit weight 16.8 kN/m3. Model piles were tested in a sand box with load applied by a hydraulic compression jack and measured by means of a load cell. The settlement of the piles was measured by means of two dial gages; three strain gages were attached on piles to measure the strains and to calculate the load carried by each pile in the group by the strain indicator. Two types of piles (single pile and group of piles (1x2)) were tested in the laboratory as a free standing pile group. A prototype of a cavity was used and placed adjacent to the piles at different distances from the pile centerline and different depths from the surface. The effect of variation of cavity locations (X), cavity depths (Y), and cavity diameter (d) on the load and settlement of the pile and groups of piles have been studied for all tests. It was found that the presence of the cavity in the soil reduces the ultimate failure load of the pile. For single pile, the reduction rate is about (10% to 60%). For pile group (1x2), the reduction rate is about (40% to 80%). As intuitively expected, induced pile axial force is largest for the case where the level of the cavity is located below pile tip because the cavity is located within the zone of large displacement
first_indexed 2024-03-08T06:13:07Z
format Article
id doaj.art-1dc53111396442fd8f95994778a99f47
institution Directory Open Access Journal
issn 1681-6900
2412-0758
language English
last_indexed 2024-03-08T06:13:07Z
publishDate 2014-08-01
publisher Unviversity of Technology- Iraq
record_format Article
series Engineering and Technology Journal
spelling doaj.art-1dc53111396442fd8f95994778a99f472024-02-04T17:31:10ZengUnviversity of Technology- IraqEngineering and Technology Journal1681-69002412-07582014-08-013271733175110.30684/etj.32.7A1099908Effect of Cavity in Sandy Soil on Load Distribution of Pile GroupMohammed Y. FattahKarim H. Ibrahim. Al-HeloHala H. AbedThe present study investigates the influence of presence of cavities on adjacent buildings especially in the case of piled structures. The presence of cavity affects on the bearing capacity and settlement of piled foundation. This paper presents an experimental study to investigate the behavior of model piles embedded in sandy soil of dry unit weight 16.8 kN/m3. Model piles were tested in a sand box with load applied by a hydraulic compression jack and measured by means of a load cell. The settlement of the piles was measured by means of two dial gages; three strain gages were attached on piles to measure the strains and to calculate the load carried by each pile in the group by the strain indicator. Two types of piles (single pile and group of piles (1x2)) were tested in the laboratory as a free standing pile group. A prototype of a cavity was used and placed adjacent to the piles at different distances from the pile centerline and different depths from the surface. The effect of variation of cavity locations (X), cavity depths (Y), and cavity diameter (d) on the load and settlement of the pile and groups of piles have been studied for all tests. It was found that the presence of the cavity in the soil reduces the ultimate failure load of the pile. For single pile, the reduction rate is about (10% to 60%). For pile group (1x2), the reduction rate is about (40% to 80%). As intuitively expected, induced pile axial force is largest for the case where the level of the cavity is located below pile tip because the cavity is located within the zone of large displacementhttps://etj.uotechnology.edu.iq/article_99908_a7954e92f682ebc2b002bdf68d2a01e4.pdfcavitytunnelpile groupsandy soil
spellingShingle Mohammed Y. Fattah
Karim H. Ibrahim. Al-Helo
Hala H. Abed
Effect of Cavity in Sandy Soil on Load Distribution of Pile Group
Engineering and Technology Journal
cavity
tunnel
pile group
sandy soil
title Effect of Cavity in Sandy Soil on Load Distribution of Pile Group
title_full Effect of Cavity in Sandy Soil on Load Distribution of Pile Group
title_fullStr Effect of Cavity in Sandy Soil on Load Distribution of Pile Group
title_full_unstemmed Effect of Cavity in Sandy Soil on Load Distribution of Pile Group
title_short Effect of Cavity in Sandy Soil on Load Distribution of Pile Group
title_sort effect of cavity in sandy soil on load distribution of pile group
topic cavity
tunnel
pile group
sandy soil
url https://etj.uotechnology.edu.iq/article_99908_a7954e92f682ebc2b002bdf68d2a01e4.pdf
work_keys_str_mv AT mohammedyfattah effectofcavityinsandysoilonloaddistributionofpilegroup
AT karimhibrahimalhelo effectofcavityinsandysoilonloaddistributionofpilegroup
AT halahabed effectofcavityinsandysoilonloaddistributionofpilegroup