18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model

Purpose:Occult lymph node involvement is a major issue in the management of non-small cell lung carcinoma (NSCLC), with an estimated prevalence of approximately 2.9–21.6% in 18F-FDG PET/CT series. The aim of the study is to construct a PET model to improve lymph node assessment.Methods:Patients with...

Full description

Bibliographic Details
Main Authors: David Morland, Marco Chiappetta, Pierre-Emmanuel Falcoz, Marie-Pierre Chenard, Salvatore Annunziata, Luca Boldrini, Filippo Lococo, Alessio Imperiale
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-04-01
Series:Frontiers in Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmed.2023.1141636/full
_version_ 1827959404402573312
author David Morland
David Morland
David Morland
Marco Chiappetta
Marco Chiappetta
Pierre-Emmanuel Falcoz
Marie-Pierre Chenard
Salvatore Annunziata
Luca Boldrini
Filippo Lococo
Filippo Lococo
Alessio Imperiale
Alessio Imperiale
Alessio Imperiale
author_facet David Morland
David Morland
David Morland
Marco Chiappetta
Marco Chiappetta
Pierre-Emmanuel Falcoz
Marie-Pierre Chenard
Salvatore Annunziata
Luca Boldrini
Filippo Lococo
Filippo Lococo
Alessio Imperiale
Alessio Imperiale
Alessio Imperiale
author_sort David Morland
collection DOAJ
description Purpose:Occult lymph node involvement is a major issue in the management of non-small cell lung carcinoma (NSCLC), with an estimated prevalence of approximately 2.9–21.6% in 18F-FDG PET/CT series. The aim of the study is to construct a PET model to improve lymph node assessment.Methods:Patients with a non-metastatic cT1 NSCLC were retrospectively included from two centers, one used to constitute the training set, the other for the validation set. The best multivariate model based on Akaike’s information criterion was selected, considering age, sex, visual assessment of lymph node (cN0 status), lymph node SUVmax, primary tumor location, tumor size, and tumoral SUVmax (T_SUVmax). A threshold minimizing false pN0 prediction was chosen. This model was then applied to the validation set.Results:In total, 162 patients were included (training set: 44, validation set: 118). A model combining cN0 status and T_SUVmax was selected (AUC 0.907, specificity at threshold: 88.2%). In the validation cohort, this model resulted in an AUC of 0.832 and a specificity of 92.3% versus 65.4% for visual interpretation alone (p = 0.02). A total of two false N0 predictions were noted (1 pN1 and 1 pN2).Conclusion:Primary tumor SUVmax improves N status prediction and could allow a better selection of patients who are candidates for minimally invasive approaches.
first_indexed 2024-04-09T15:51:39Z
format Article
id doaj.art-1ddb0ff0ad514e69a09ec7c7244202a5
institution Directory Open Access Journal
issn 2296-858X
language English
last_indexed 2024-04-09T15:51:39Z
publishDate 2023-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Medicine
spelling doaj.art-1ddb0ff0ad514e69a09ec7c7244202a52023-04-26T05:44:36ZengFrontiers Media S.A.Frontiers in Medicine2296-858X2023-04-011010.3389/fmed.2023.1141636114163618F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography modelDavid Morland0David Morland1David Morland2Marco Chiappetta3Marco Chiappetta4Pierre-Emmanuel Falcoz5Marie-Pierre Chenard6Salvatore Annunziata7Luca Boldrini8Filippo Lococo9Filippo Lococo10Alessio Imperiale11Alessio Imperiale12Alessio Imperiale13Médecine Nucléaire, Institut Godinot, Reims, FranceCReSTIC EA 3804 et Laboratoire de Biophysique, Université de Reims Champagne-Ardenne, Reims, FranceUnità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, ItalyUniversità Cattolica del Sacro Cuore, Rome, ItalyChirurgia Toracica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, ItalyService de Chirurgie Thoracique, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceService de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, FranceUnità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, ItalyUnità di Radioterapia, Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, ItalyUniversità Cattolica del Sacro Cuore, Rome, ItalyChirurgia Toracica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, ItalyMédecine Nucléaire, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France0Hôpitaux Universitaires de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France1DRHIM, IPHC, UMR7178, CNRS/Unistra, Strasbourg, FrancePurpose:Occult lymph node involvement is a major issue in the management of non-small cell lung carcinoma (NSCLC), with an estimated prevalence of approximately 2.9–21.6% in 18F-FDG PET/CT series. The aim of the study is to construct a PET model to improve lymph node assessment.Methods:Patients with a non-metastatic cT1 NSCLC were retrospectively included from two centers, one used to constitute the training set, the other for the validation set. The best multivariate model based on Akaike’s information criterion was selected, considering age, sex, visual assessment of lymph node (cN0 status), lymph node SUVmax, primary tumor location, tumor size, and tumoral SUVmax (T_SUVmax). A threshold minimizing false pN0 prediction was chosen. This model was then applied to the validation set.Results:In total, 162 patients were included (training set: 44, validation set: 118). A model combining cN0 status and T_SUVmax was selected (AUC 0.907, specificity at threshold: 88.2%). In the validation cohort, this model resulted in an AUC of 0.832 and a specificity of 92.3% versus 65.4% for visual interpretation alone (p = 0.02). A total of two false N0 predictions were noted (1 pN1 and 1 pN2).Conclusion:Primary tumor SUVmax improves N status prediction and could allow a better selection of patients who are candidates for minimally invasive approaches.https://www.frontiersin.org/articles/10.3389/fmed.2023.1141636/fullNSCLClymph nodespositron emission tomographyFDGmodel
spellingShingle David Morland
David Morland
David Morland
Marco Chiappetta
Marco Chiappetta
Pierre-Emmanuel Falcoz
Marie-Pierre Chenard
Salvatore Annunziata
Luca Boldrini
Filippo Lococo
Filippo Lococo
Alessio Imperiale
Alessio Imperiale
Alessio Imperiale
18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model
Frontiers in Medicine
NSCLC
lymph nodes
positron emission tomography
FDG
model
title 18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model
title_full 18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model
title_fullStr 18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model
title_full_unstemmed 18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model
title_short 18F-FDG primary tumor uptake to improve N status prediction in cT1 non-metastatic non-small cell lung cancer: development and validation of a positron emission tomography model
title_sort 18f fdg primary tumor uptake to improve n status prediction in ct1 non metastatic non small cell lung cancer development and validation of a positron emission tomography model
topic NSCLC
lymph nodes
positron emission tomography
FDG
model
url https://www.frontiersin.org/articles/10.3389/fmed.2023.1141636/full
work_keys_str_mv AT davidmorland 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT davidmorland 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT davidmorland 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT marcochiappetta 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT marcochiappetta 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT pierreemmanuelfalcoz 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT mariepierrechenard 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT salvatoreannunziata 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT lucaboldrini 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT filippolococo 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT filippolococo 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT alessioimperiale 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT alessioimperiale 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel
AT alessioimperiale 18ffdgprimarytumoruptaketoimprovenstatuspredictioninct1nonmetastaticnonsmallcelllungcancerdevelopmentandvalidationofapositronemissiontomographymodel